Skip to main content

Nucleosome Core Particle Reconstitution with Recombinant Histones and Widom 601 DNA

  • Protocol
  • First Online:
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2599))

Abstract

Reconstitution of nucleosomes from recombinant histones and DNA is a widely used tool for studying nucleosome structure, dynamics, and interactions. Preparation of reconstituted nucleosomes allows for the study of nucleosomes with defined compositions. Here, we describe methods for refolding recombinant human histones, reconstituting nucleosome core particles with 147 bp Widom 601 DNA, and purification via sucrose gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelaz DA, Yerkesh Z, Kirchgäßner S et al (2020) Examining histone modification crosstalk using immobilized libraries established from ligation-ready nucleosomes. Chem Sci 11:9218–9225

    Article  Google Scholar 

  2. Simon MD, Chu F, Racki LR et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shogren-Knaak MA, Peterson CL (2004) Creating designer histones by native chemical ligation. Methods Enzymol 375:62–76

    Article  CAS  PubMed  Google Scholar 

  4. Li F, Allahverdi A, Yang R et al (2011) A direct method for site-specific protein acetylation. Angew Chem Int Ed Engl 50:9611–9614

    Article  CAS  PubMed  Google Scholar 

  5. Dhall A, Weller CE, Chatterjee C (2016) Rapid semisynthesis of acetylated and sumoylated histone analogs. Methods Enzymol 574:149–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dyer PN, Edayathumangalam RS, White CL et al (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka Y, Tawaramoto-Sasanuma M, Kawaguchi S et al (2004) Expression and purification of recombinant human histones. Methods 33:3–11

    Article  CAS  PubMed  Google Scholar 

  8. Kujirai T, Arimura Y, Fujita R et al (2018) Histone variants, methods and protocols. Methods Mol Biol 1832:3–20

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen UTT, Bittova L, Müller MM et al (2014) Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat Methods 11:834–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269–324

    Article  CAS  PubMed  Google Scholar 

  11. Choy JS, Wei S, Lee JY et al (2010) DNA methylation increases nucleosome compaction and rigidity. J Am Chem Soc 132:1782–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taylor J-S (2015) Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage. DNA Repair 36:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ngo TTM, Zhang Q, Zhou R et al (2015) Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160:1135–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Emmerik CL, van Ingen H (2019) Unspinning chromatin: revealing the dynamic nucleosome landscape by NMR. Prog Nucl Magn Reson Spectrosc 110:1–19

    Article  PubMed  Google Scholar 

  15. Abramov G, Velyvis A, Rennella E et al (2020) A methyl-TROSY approach for NMR studies of high-molecular-weight DNA with application to the nucleosome core particle. PNAS 117(23):12836–12846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gansen A, Valeri A, Hauger F et al (2009) Nucleosome disassembly intermediates characterized by single-molecule FRET. Proc Natl Acad Sci U S A 106:15308–15313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cuvier O, Fierz B (2017) Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat Rev Genet 18:457–472

    Article  CAS  PubMed  Google Scholar 

  18. Fierz B, Poirier MG (2019) Biophysics of chromatin dynamics. Annu Rev Biophys 48:321–345

    Article  CAS  PubMed  Google Scholar 

  19. Zhou CY, Narlikar GJ (2016) Analysis of nucleosome sliding by ATP-dependent chromatin remodeling enzymes. Methods Enzymol 573:119–135

    Article  CAS  PubMed  Google Scholar 

  20. Zhou B-R, Feng H, Kale S et al (2021) Distinct structures and dynamics of chromatosomes with different human linker histone isoforms. Mol Cell 81:166–182.e6

    Article  CAS  PubMed  Google Scholar 

  21. Zlatanova J, Bishop TC, Victor J-M et al (2009) The nucleosome family: dynamic and growing. Structure 17:160–171

    Article  CAS  PubMed  Google Scholar 

  22. Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16

    CAS  PubMed  Google Scholar 

  23. Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:3–19

    Article  CAS  PubMed  Google Scholar 

  24. Dutta A, Workman JL (2017) In vitro assembly of nucleosomes for binding/remodeling assays. Methods Mol Biol 1528:1–17

    Article  CAS  PubMed  Google Scholar 

  25. Nodelman IM, Patel A, Levendosky RF et al (2020) Reconstitution and purification of nucleosomes with recombinant histones and purified DNA. Curr Protoc Mol Biol 133:e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rogge RA, Kalashnikova AA, Muthurajan UM et al (2013) Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA. J Vis Exp. https://doi.org/10.3791/50354

  27. Lee KM, Narlikar G (2001) Assembly of nucleosomal templates by salt dialysis. Curr Protoc Mol Biol. Chapter 21:Unit 21.6. https://doi.org/10.1002/0471142727.mb2106s54

  28. Hayes JJ, Lee KM (1997) In vitro reconstitution and analysis of mononucleosomes containing defined DNAs and proteins. Methods 12:2–9

    Article  CAS  PubMed  Google Scholar 

  29. Carruthers LM, Tse C, Walker KP et al (1999) Assembly of defined nucleosomal and chromatin arrays from pure components. Methods Enzymol 304:19–35

    Article  CAS  PubMed  Google Scholar 

  30. Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  31. Luger K, Rechsteiner TJ, Flaus AJ et al (1997) Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol 272:301–311

    Article  CAS  PubMed  Google Scholar 

  32. Laskey RA, Earnshaw WC (1980) Nucleosome assembly. Nature 286:763–767

    Article  CAS  PubMed  Google Scholar 

  33. Gaykalova DA, Kulaeva OI, Bondarenko VA et al (2009) Chromatin protocols, second edition. Methods Mol Biol 523:109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42

    Article  CAS  PubMed  Google Scholar 

  35. Thåström A, Lowary PT, Widlund HR et al (1999) Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J Mol Biol 288:213–229

    Article  PubMed  Google Scholar 

  36. Brehove M, Shatoff E, Donovan BT et al (2019) DNA sequence influences hexasome orientation to regulate DNA accessibility. Nucleic Acids Res 47:5617–5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levendosky RF, Sabantsev A, Deindl S et al (2016) The Chd1 chromatin remodeler shifts hexasomes unidirectionally. elife 5:e21356

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vasudevan D, Chua EYD, Davey CA (2010) Crystal structures of nucleosome core particles containing the “601” strong positioning sequence. J Mol Biol 403:1–10

    Article  CAS  PubMed  Google Scholar 

  39. Chua EYD, Vasudevan D, Davey GE et al (2012) The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res 40:6338–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morrison EA, Baweja L, Poirier MG et al (2021) Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility. Nucleic Acids Res 49:gkab246

    Article  Google Scholar 

  41. Morrison EA, Bowerman S, Sylvers KL et al (2018) The conformation of the histone H3 tail inhibits association of the BPTF PHD finger with the nucleosome. elife 7:e31481

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kagalwala MN, Glaus BJ, Dang W et al (2004) Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23:2092–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shimko JC, North JA, Bruns AN et al (2011) Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J Mol Biol 408:187–204

    Article  CAS  PubMed  Google Scholar 

  44. Lee K-M, Sif S, Kingston RE et al (1999) hSWI/SNF disrupts interactions between the H2A N-terminal tail and Nucleosomal DNA. Biochemistry 38:8423–8429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported in part by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM142594 and the Medical College of Wisconsin Research Affairs Committee. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma A. Morrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hammonds, E.F., Morrison, E.A. (2023). Nucleosome Core Particle Reconstitution with Recombinant Histones and Widom 601 DNA. In: Simoes-Costa, M. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 2599. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2847-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2847-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2846-1

  • Online ISBN: 978-1-0716-2847-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics