Skip to main content

Optical Tissue Clearing Enables Three-Dimensional Morphometry in Experimental Nerve Regeneration Research

  • Protocol
  • First Online:
Signal Transduction Immunohistochemistry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2593))

  • 905 Accesses

Abstract

Novel optical tissue clearing techniques enable three-dimensional imaging of entire organs at a subcellular resolution while preserving tissue architecture and fluorescence. In conjunction with computational image segmentation and automated analysis, these techniques provide fast and precise three-dimensional morphometry. Here, we present a tissue clearing protocol adapted to nerves and their motor and sensory targets in experimental rat models. Given their rapid processing times, low costs, and wide-ranging applicability, these techniques are likely to be a key technology for future nerve repair studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richardson DS, Lichtman JW (2015) Clarifying tissue clearing. Cell 162(2):246–257. https://doi.org/10.1016/j.cell.2015.06.067

    Article  CAS  Google Scholar 

  2. Erturk A, Mauch CP, Hellal F et al (2011) Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat Med 18(1):166–171. https://doi.org/10.1038/nm.2600

    Article  CAS  Google Scholar 

  3. Hama H, Kurokawa H, Kawano H et al (2011) Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci 14(11):1481–1488. https://doi.org/10.1038/nn.2928

    Article  CAS  Google Scholar 

  4. Renier N, Wu Z, Simon DJ et al (2014) iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159(4):896–910. https://doi.org/10.1016/j.cell.2014.10.010

    Article  CAS  Google Scholar 

  5. Neckel PH, Mattheus U, Hirt B et al (2016) Large-scale tissue clearing (PACT): technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep 6:34331. https://doi.org/10.1038/srep34331

    Article  CAS  Google Scholar 

  6. Belle M, Godefroy D, Couly G et al (2017) Tridimensional visualization and analysis of early human development. Cell 169(1):161–73.e12. https://doi.org/10.1016/j.cell.2017.03.008

    Article  CAS  Google Scholar 

  7. Qi Y, Yu T, Xu J et al (2019) FDISCO: advanced solvent-based clearing method for imaging whole organs. Sci Adv 5(1):eaau8355. https://doi.org/10.1126/sciadv.aau8355

    Article  CAS  Google Scholar 

  8. Daeschler SC, Zhang J, Gordon T et al (2022) Foretinib mitigates cutaneous nerve fiber loss in experimental diabetic neuropathy. Sci Rep 12(1):8444. https://doi.org/10.1038/s41598-022-12455-3

    Article  CAS  Google Scholar 

  9. Daeschler S, Zhang J, Gordon T et al (2022) Optical tissue clearing enables rapid, precise and comprehensive assessment of three-dimensional morphology in experimental nerve regeneration research. Neural Regen Res 17(6):1348–1356. https://doi.org/10.4103/1673-5374.329473

    Article  Google Scholar 

  10. Messal HA, Almagro J, Zaw Thin M et al (2021) Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nat Protoc 16(1):239–262. https://doi.org/10.1038/s41596-020-00414-z

    Article  CAS  Google Scholar 

  11. Carro M, Paroutis P, Woolside M, et al (2015) Improved imaging of cleared samples with ZEISS Lightsheet Z.1: refractive index on demand. https://doi.org/10.13140/RG.2.1.1875.4408

  12. Williams MPI, Rigon M, Straka T et al (2019) A novel optical tissue clearing protocol for mouse skeletal muscle to visualize endplates in their tissue context. Front Cell Neurosci 13(49). https://doi.org/10.3389/fncel.2019.00049

  13. Chen W, Yu T, Chen B et al (2016) In vivo injection of α-bungarotoxin to improve the efficiency of motor endplate labeling. Brain Behav 6(6):e00468. https://doi.org/10.1002/brb3.468

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DA 2255/1-1).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Daeschler, S.C., Borschel, G.H. (2023). Optical Tissue Clearing Enables Three-Dimensional Morphometry in Experimental Nerve Regeneration Research. In: Kalyuzhny, A.E. (eds) Signal Transduction Immunohistochemistry. Methods in Molecular Biology, vol 2593. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2811-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2811-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2810-2

  • Online ISBN: 978-1-0716-2811-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics