Skip to main content

Characterizing Dopamine Transporter Mediated Uptake and Efflux in Brain Slices: A New Approach

  • Protocol
  • First Online:
Dopaminergic System Function and Dysfunction: Experimental Approaches

Part of the book series: Neuromethods ((NM,volume 193))

  • 455 Accesses

Abstract

The dopamine transporter (DAT) plays a fundamental role in dopamine (DA) neurotransmission by retrieving the transmitter from the extracellular space back into the DA nerve terminal. Several lines of evidence suggest that in addition to uptake or forward transport, DAT can also function to release DA. This process, which is referred to as DAT-mediated release or efflux, is the mechanism used by potent and highly addictive psychostimulants, such as amphetamine (AMPH) and its analogues, to increase extracellular DA levels in motivational and reward areas of the brain. Conventionally, dopaminergic neurons release DA through a calcium-dependent exocytotic vesicular process. In the past several years, our lab and others have identified signaling pathways that promote DA release through DAT. In this review chapter and step-by-step protocol, we will describe assays to study endogenous DA efflux and DAT dynamics using acute brain slices combined with high-performance liquid chromatography (HPLC) for DA detection along with a modification of a classically used radioactive uptake assay to measure levels of DA uptake. Further examining DAT functions and DA dynamics is key for the development of novel therapeutics in DA-related disorders including substance abuse. Here, we described the use of acute brain slices further dissected into precise regions of interest to examine the dual function of DAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zahm DS, Trimble M (2008) The dopaminergic projection system, basal forebrain macrosystems, and conditioned stimuli. CNS Spectr 13:32ā€“40

    ArticleĀ  Google ScholarĀ 

  2. Giros B, Caron MG (1993) Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 14:43ā€“49. https://doi.org/10.1016/0165-6147(93)90029-J

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78:610ā€“624

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75ā€“114. https://doi.org/10.1016/S0166-4328(02)00286-3

    ArticleĀ  Google ScholarĀ 

  5. Wanat MJ, Willuhn I, Clark JJ, Phillips PEM (2009) Phasic dopamine release in appetitive behaviors and drug addiction. Curr Drug Abuse Rev 2(2):195ā€“213. https://doi.org/10.2174/1874473710902020195

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Volkow ND, Wang GJ, Newcorn J et al (2007) Brain dopamine transporter levels in treatment and drug naĆÆve adults with ADHD. NeuroImage 34:1182ā€“1190. https://doi.org/10.1016/j.neuroimage.2006.10.014

    ArticleĀ  Google ScholarĀ 

  7. Leenders KL, Palmer AJ, Quinn N et al (1986) Brain dopamine metabolism in patients with Parkinsonā€™s disease measured with positron emission tomography. J Neurol Neurosurg Psychiatry 49:853ā€“860. https://doi.org/10.1136/jnnp.49.8.853

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Scherman D, Desnos C, Darchen F et al (1989) Striatal dopamine deficiency in Parkinsonā€™s disease: role of aging. Ann Neurol 26:551ā€“557. https://doi.org/10.1002/ana.410260409

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Aggarwal S, Mortensen O (2017) Overview of monoamine transporters. Curr Protoc Pharmacol 79:12.16.1ā€“12.16.17. https://doi.org/10.1002/CPPH.32

    ArticleĀ  Google ScholarĀ 

  10. Nirenberg MJ, Vaughan RA, Uhl GR et al (1996) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J Neurosci 16:436ā€“447. https://doi.org/10.1523/jneurosci.16-02-00436.1996

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Blanchard V, Raisman-Vozari R, Vyas S et al (1994) Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of the rat mesencephalon. Mol Brain Res 22:29ā€“38. https://doi.org/10.1016/0169-328X(94)90029-9

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388(2):211ā€“227

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Patel JC, Witkovsky P, Avshalumov MV, Rice ME (2009) Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J Neurosci 29:6568ā€“6579. https://doi.org/10.1523/JNEUROSCI.0181-09.2009

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science (80- ) 237:1219ā€“1223. https://doi.org/10.1126/science.2820058

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208:203ā€“209

    CASĀ  Google ScholarĀ 

  16. Kahlig KM, Binda F, Khoshbouei H et al (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci U S A 102:3495ā€“3500. https://doi.org/10.1073/pnas.0407737102

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Mauna JC, Harris SS, Pino JA et al (2019) G protein Ī²Ī³ subunits play a critical role in the actions of amphetamine. Transl Psychiatry 9:1ā€“11. https://doi.org/10.1038/s41398-019-0387-8

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527ā€“535. https://doi.org/10.1111/j.1471-4159.1993.tb03181.x

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Punja S, Shamseer L, Hartling L et al (2016) Amphetamines for attention deficit hyperactivity disorder (ADHD) in children and adolescents. Cochrane Database Syst Rev 2:CD009996

    Google ScholarĀ 

  20. Castells X, Blanco-Silvente L, Cunill R (2018) Amphetamines for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database Syst Rev 8(8):CD007813

    Google ScholarĀ 

  21. Garcia-Olivares J, Baust T, Harris S et al (2017) GĪ²Ī³ subunit activation promotes dopamine efflux through the dopamine transporter. Mol Psychiatry 22:1673ā€“1679. https://doi.org/10.1038/mp.2017.176

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Garcia-Olivares J, Torres-Salazar D et al (2013) Inhibition of dopamine transporter activity by G protein Ī²Ī³ subunits. PLoS One 8(3):e59788. https://doi.org/10.1371/journal.pone.0059788

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Gurevich VV, Gurevich EV (2019) GPCR signaling regulation: the role of GRKs and arrestins. Front Pharmacol 10:125. https://doi.org/10.3389/FPHAR.2019.00125

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Bungay PM, Newton-Vinson P, Isele W et al (2003) Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J Neurochem 86:932ā€“946. https://doi.org/10.1046/j.1471-4159.2003.01904.x

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Yorgason JT, EspaƱa RA, Jones SR (2011) Demon voltammetry and analysis software: analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures. J Neurosci Methods 202(2):158ā€“164. https://doi.org/10.1016/j.jneumeth.2011.03.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Alonso IP, Pino JA, Kortagere S et al (2021) Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology 46:699ā€“708. https://doi.org/10.1038/s41386-020-00879-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Schelp SA, Brodnik ZD, Rakowski DR et al (2018) Diazepam concurrently increases the frequency and decreases the amplitude of transient dopamine release events in the nucleus accumbens. J Pharmacol Exp Ther 364:145ā€“155. https://doi.org/10.1124/jpet.117.241802

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Bass CE, Grinevich VP, Vance ZB et al (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114(5):1344ā€“1352. https://doi.org/10.1111/j.1471-4159.2010.06850.x

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Xiao N, Privman E, Venton BJ (2014) Optogenetic control of serotonin and dopamine release in drosophila larvae. ACS Chem Neurosci 5:666ā€“673. https://doi.org/10.1021/cn500044b

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Sun F, Zeng J, Jing M et al (2018) A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:481ā€“496.e19. https://doi.org/10.1016/j.cell.2018.06.042

    ArticleĀ  CASĀ  Google ScholarĀ 

  31. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265ā€“1274. https://doi.org/10.1023/a:1007648229795

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Broening HW, William S (1998) Ontogeny of neurotransmitters: monoamines. In: Handbook of developmental neurotoxicology. Academic Press, pp 245ā€“256. https://doi.org/10.1016/B978-012648860-9.50017-0

    ChapterĀ  Google ScholarĀ 

  33. Owens WA, Sevak RJ, Galici R et al (2005) Deficits in dopamine clearance and locomotion in hypoinsulinemic rats unmask novel modulation of dopamine transporters by amphetamine. J Neurochem 94:1402ā€“1410. https://doi.org/10.1111/J.1471-4159.2005.03289.x

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Pino JA, Awadallah N, Norris AM, Torres GE (2021) A plate-based assay for the measurement of endogenous monoamine release in acute brain slices. J Vis Exp (174). https://doi.org/10.3791/62127. PMID: 34459801

  35. Koutzoumis DN, Vergara M, Pino J et al (2020) Alterations of the gut microbiota with antibiotics protects dopamine neuron loss and improve motor deficits in a pharmacological rodent model of Parkinsonā€™s disease. Exp Neurol 325:113159. https://doi.org/10.1016/j.expneurol.2019.113159

    ArticleĀ  CASĀ  Google ScholarĀ 

  36. Torres G, Gainetdinov R, Caron M (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13ā€“25. https://doi.org/10.1038/nrn1008

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Sulzer D, Chen T, Lau Y et al (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102ā€“4108. https://doi.org/10.1523/JNEUROSCI.15-05-04102.1995

    ArticleĀ  CASĀ  Google ScholarĀ 

  38. Fog JU, Khoshbouei H et al (2006) Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51(4):417ā€“429. https://doi.org/10.1016/j.neuron.2006.06.028. PMID: 16908408

    ArticleĀ  CASĀ  Google ScholarĀ 

  39. Johnson LA, Guptaroy B, Lund D, Shamban S, Gnegy ME (2005) Regulation of amphetamine-stimulated dopamine efflux by protein kinase C beta. J Biol Chem 280(12):10914ā€“10919. https://doi.org/10.1074/jbc.M413887200. Epub 2005 Jan 12. PMID: 15647254

    ArticleĀ  CASĀ  Google ScholarĀ 

  40. Leviel V (2011) Dopamine release mediated by the dopamine transporter, facts and consequences. J Neurochem 118:475ā€“489

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

We thank the members of the Torres laboratory for their helpful discussions. We also acknowledge the support of the following agencies: Fondecyt Initiation Grant N11191049 (JAP), NIH R01 Grant DA038598 (GET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo E. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Awadallah, N., Pino, J.A., Koutzoumis, D.N., Torres, G.E. (2023). Characterizing Dopamine Transporter Mediated Uptake and Efflux in Brain Slices: A New Approach. In: Fuentealba-Evans, J.A., Henny, P. (eds) Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods, vol 193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2799-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2799-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2798-3

  • Online ISBN: 978-1-0716-2799-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics