Skip to main content

Dopaminergic Control of Actions and Habits

  • Protocol
  • First Online:
Dopaminergic System Function and Dysfunction: Experimental Approaches

Part of the book series: Neuromethods ((NM,volume 193))

Abstract

Choosing between different course of behavioral response is an essential process to survive in a complex environment. Numerous studies have demonstrated that basic processes of action control may be investigated using instrumental conditioning, as instrumental response may be dissociated in goal-directed action or habitual response depending both on different, but interacting, neuronal circuits. The dopamine system is a central element in the coordination between actions and habits. In this chapter, we describe in details the different behavioral procedures used to investigate actions and habits in rodent models, including instrumental learning, outcome devaluation, and contingency degradation. We also discuss how these procedures can be combined with other techniques to specifically investigate the role of the dopamine system in these different processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dickinson A (1985) Actions and habits: the development of behavioural autonomy. Philos Trans R Soc London B, Biol Sci 308:67–78

    Article  Google Scholar 

  2. Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419

    Article  CAS  Google Scholar 

  3. Valentin VV et al (2007) Determining the neural substrates of goal-directed learning in the human brain. J Neurosci 27:4019–4026

    Article  CAS  Google Scholar 

  4. Tanaka SC et al (2008) Calculating consequences: brain systems that encode the causal effects of actions. J Neurosci 28:6750–6755

    Article  CAS  Google Scholar 

  5. Rangel A et al (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9:545–556

    Article  CAS  Google Scholar 

  6. Adams CD, Dickinson A (1981) Instrumental responding following Reinforcer devaluation. Q J Exp Psychol Sect B 33:109–121

    Article  Google Scholar 

  7. Dickinson A (1994) Instrumental conditioning. In: Animal learning and cognition. Academic Press, San Diego, pp 45–79

    Chapter  Google Scholar 

  8. Adams CD (1982) Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q J Exp Psychol B Comp Physiol Psychol 34B:77–98

    Article  Google Scholar 

  9. Dickinson A et al (1983) The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. Q J Exp Psychol B Compar Physiol Psychol 35:35–51

    Article  Google Scholar 

  10. Thrailkill EA, Bouton ME (2015) Contextual control of instrumental actions and habits. J Exp Psychol Anim Learn Cogn 41:69–80

    Article  Google Scholar 

  11. Wickens JR et al (2007) Dopaminergic mechanisms in actions and habits. J Neurosci 27:8181–8183

    Article  CAS  Google Scholar 

  12. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  Google Scholar 

  13. Lammel S et al (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 Pt B:351–359

    Google Scholar 

  14. Schultz W (2000) Multiple reward signals in the brain. Nat Rev Neurosci 1:199–207

    Article  CAS  Google Scholar 

  15. Montague PR et al (2004) Computational roles for dopamine in behavioural control. Nature 431:760–767

    Article  CAS  Google Scholar 

  16. Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7:967–975

    Article  CAS  Google Scholar 

  17. Bromberg-Martin ES et al (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:815–834

    Article  CAS  Google Scholar 

  18. Coutureau E, Parkes SL (2018) Cortical determinants of goal-directed behavior. In: Morris R et al (eds) Goal-directed decision making. Academic Press, pp 179–197

    Chapter  Google Scholar 

  19. Naneix F et al (2009) A role for medial prefrontal dopaminergic innervation in instrumental conditioning. J Neurosci 29:6599–6606

    Article  CAS  Google Scholar 

  20. Lex B, Hauber W (2010) The role of dopamine in the prelimbic cortex and the dorsomedial striatum in instrumental conditioning. Cereb Cortex 20:873–883

    Article  Google Scholar 

  21. Hitchcott PK et al (2007) Bidirectional modulation of goal-directed actions by prefrontal cortical dopamine. Cereb Cortex 17:2820–2827

    Article  Google Scholar 

  22. Naneix F et al (2012) Parallel maturation of goal-directed behavior and dopaminergic systems during adolescence. J Neurosci 32:16223–16232

    Article  CAS  Google Scholar 

  23. Naneix F et al (2013) Adolescent stimulation of D2 receptors alters the maturation of dopamine-dependent goal-directed behavior. Neuropsychopharmacology 38:1566–1574

    Article  CAS  Google Scholar 

  24. Braun S, Hauber W (2012) Striatal dopamine depletion in rats produces variable effects on contingency detection: task-related influences. Eur J Neurosci 35:486–495

    Article  Google Scholar 

  25. Faure A (2005) Lesion to the Nigrostriatal Dopamine system disrupts stimulus-response habit formation. J Neurosci 25:2771–2780

    Article  CAS  Google Scholar 

  26. Lex B, Hauber W (2010) The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning. Neurobiol Learn Mem 93:283–290

    Article  CAS  Google Scholar 

  27. Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26:3805–3812

    Article  CAS  Google Scholar 

  28. Nordquist RE et al (2007) Augmented reinforcer value and accelerated habit formation after repeated amphetamine treatment. Eur Neuropsychopharmacol 17:532–540

    Article  CAS  Google Scholar 

  29. Nelson AJD, Killcross S (2013) Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists. Front Neurosci 7:76

    Article  Google Scholar 

  30. Furlong TM et al (2017) Pulling habits out of rats: adenosine 2A receptor antagonism in dorsomedial striatum rescues meth-amphetamine-induced deficits in goal-directed action. Addict Biol 22:172–183

    Article  CAS  Google Scholar 

  31. Furlong TM et al (2018) Methamphetamine promotes habitual action and alters the density of striatal glutamate receptor and vesicular proteins in dorsal striatum. Addict Biol 23:857–867

    Article  CAS  Google Scholar 

  32. Corbit LH et al (2014) Effects of repeated cocaine exposure on habit learning and reversal by N-acetylcysteine. Neuropsychopharmacology 39:1893–1901

    Article  CAS  Google Scholar 

  33. LeBlanc KH et al (2013) Repeated cocaine exposure facilitates the expression of incentive motivation and induces habitual control in rats. PLoS One 8:e61355

    Article  CAS  Google Scholar 

  34. Vandaele Y, Ahmed SH (2021) Habit, choice, and addiction. Neuropsychopharmacology 46:689–698

    Article  CAS  Google Scholar 

  35. Alcaraz F et al (2018) Thalamocortical and corticothalamic pathways differentially contribute to goal-directed behaviors in the rat. elife 7:e32517

    Article  Google Scholar 

  36. Fresno V et al (2019) A thalamocortical circuit for updating action-outcome associations. elife 8:e46187

    Article  Google Scholar 

  37. Parkes SL et al (2016) A time course analysis of satiety-induced instrumental outcome devaluation. Learn Behav 44:347–355

    Article  Google Scholar 

  38. Parkes SL et al (2018) Insular and ventrolateral orbitofrontal Cortices differentially contribute to goal-directed behavior in Rodents. Cereb Cortex 28:2313–2325

    Article  Google Scholar 

  39. Tantot F et al (2017) The effect of high-fat diet consumption on appetitive instrumental behavior in rats. Appetite 108:203–211

    Article  Google Scholar 

  40. Tran-Tu-Yen DAS et al (2009) Transient role of the rat prelimbic cortex in goal-directed behaviour. Eur J Neurosci 30:464–471

    Article  Google Scholar 

  41. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7:464–476

    Article  CAS  Google Scholar 

  42. Bradfield LA et al (2020) Goal-directed actions transiently depend on dorsal hippocampus. Nat Neurosci 23:1194–1197

    Article  CAS  Google Scholar 

  43. Killcross S, Coutureau E (2003) Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb Cortex 13:400–408

    Article  Google Scholar 

  44. Trask S, Bouton ME (2014) Contextual control of operant behavior: evidence for hierarchical associations in instrumental learning. Learn Behav 42:281–288

    Article  Google Scholar 

  45. Hammond LJ (1980) The effect of contingency upon the appetitive conditioning of free-operant behavior. J Exp Anal Behav 34:297–304

    Article  CAS  Google Scholar 

  46. Colwill RM, Rescorla RA (1986) Associative structures in instrumental learning. In: Bower GH (ed) Psychology of learning and motivation. Academic Press, pp 55–104

    Google Scholar 

  47. Dickinson A, Mulatero CW (1989) Reinforcer specificity of the suppression of instrumental performance on a non-contingent schedule. Behav Process 19:167–180

    Article  CAS  Google Scholar 

  48. Dias-Ferreira E et al (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325:621–625

    Article  CAS  Google Scholar 

  49. Stuber GD et al (2015) Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron 85:439–445

    Article  CAS  Google Scholar 

  50. Lammel S et al (2015) Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85:429–438

    Article  CAS  Google Scholar 

  51. Morceau S et al (2019) Targeting reciprocally connected brain regions through CAV-2 mediated interventions. Front Mol Neurosci 12:303

    Article  Google Scholar 

  52. Cerpa J-C et al (2020) Targeting Catecholaminergic systems in transgenic rats with a CAV-2 vector Harboring a Cre-dependent DREADD Cassette. Front Mol Neurosci 13:121

    Article  CAS  Google Scholar 

  53. Gunaydin LA et al (2014) Natural neural projection dynamics underlying social behavior. Cell 157:1535–1551

    Article  CAS  Google Scholar 

  54. Labouesse MA et al (2020) GPCR-based Dopamine sensors-A detailed guide to inform sensor choice for in vivo imaging. Int J Mol Sci 21:E8048

    Article  Google Scholar 

  55. Ducrocq F et al (2019) Decrease in operant responding under obesogenic diet exposure is not related to deficits in incentive or Hedonic processes. Obesity (Silver Spring) 27:255–263

    Article  CAS  Google Scholar 

  56. Naneix F et al (2019) Investigating the effect of physiological need states on palatability and motivation using microstructural analysis of licking. Neuroscience. https://doi.org/10.1016/j.neuroscience.2019.10.036

  57. Gremel CM, Costa RM (2013) Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat Commun 4:2264

    Article  Google Scholar 

  58. Bouton ME (2021) Context, attention, and the switch between habit and goal-direction in behavior. Learn Behav 49:349–362

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Coutureau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naneix, F., Coutureau, E. (2023). Dopaminergic Control of Actions and Habits. In: Fuentealba-Evans, J.A., Henny, P. (eds) Dopaminergic System Function and Dysfunction: Experimental Approaches. Neuromethods, vol 193. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2799-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2799-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2798-3

  • Online ISBN: 978-1-0716-2799-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics