Skip to main content

Investigating Physiopathological Roles for Sirtuins in a Mouse Model

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2589))

Abstract

Sirtuins are identified as NAD+-dependent class III histone deacetylases (HDAC) and are involved in a variety of cellular activities, including energy metabolism, DNA repair, epigenetics, gene expression, cell proliferation, differentiation, and survival. Using genetically modified model organisms, sirtuins are proved to be one of the most conserved aging-regulatory and longevity-promoting genes/pathways among species. Of the seven sirtuins, SIRT7 is the only sirtuin that localizes in the nucleolus. SIRT7 senses endogenous and environmental stress to maintain physiological homeostasis. Sirt7 deficient and transgenic mice provide a useful tool to understand the mechanisms of aging and related pathologies. In this chapter, we summarized the most widely applied methods to understand the physiopathological function of SIRT7 in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. https://doi.org/10.1038/nature08197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang X, Cao R, Niu J, Yang S, Ma H, Zhao S, Li H (2019) Molecular basis for hierarchical histone de-beta-hydroxybutyrylation by SIRT3. Cell Discov 5:35. https://doi.org/10.1038/s41421-019-0103-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. O’Callaghan C, Vassilopoulos A (2017) Sirtuins at the crossroads of stemness, aging, and cancer. Aging Cell 16(6):1208–1218. https://doi.org/10.1111/acel.12685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M (2003) The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23(1):38–54

    Article  CAS  Google Scholar 

  5. Mercken EM, Hu J, Krzysik-Walker S, Wei M, Li Y, McBurney MW, de Cabo R, Longo VD (2014) SIRT1 but not its increased expression is essential for lifespan extension in caloric-restricted mice. Aging Cell 13(1):193–196. https://doi.org/10.1111/acel.12151

    Article  CAS  PubMed  Google Scholar 

  6. Boily G, He XH, Pearce B, Jardine K, McBurney MW (2009) SirT1-null mice develop tumors at normal rates but are poorly protected by resveratrol. Oncogene 28(32):2882–2893. https://doi.org/10.1038/onc.2009.147

    Article  CAS  PubMed  Google Scholar 

  7. Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18(3):416–430. https://doi.org/10.1016/j.cmet.2013.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Tanokura M, Denu JM, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812. https://doi.org/10.1016/j.cell.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wood JG, Schwer B, Wickremesinghe PC, Hartnett DA, Burhenn L, Garcia M, Li M, Verdin E, Helfand SL (2018) Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster. Proc Natl Acad Sci U S A 115(7):1564–1569. https://doi.org/10.1073/pnas.1720673115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, Wagner GR, Thompson JW, Madsen AS, Green MF, Sivley RM, Ilkayeva OR, Stevens RD, Backos DS, Capra JA, Olsen CA, Campbell JE, Muoio DM, Grimsrud PA, Hirschey MD (2017) SIRT4 is a Lysine deacylase that controls Leucine metabolism and insulin secretion. Cell Metab 25 (4):838–855 e815. https://doi.org/10.1016/j.cmet.2017.03.003

  11. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329. https://doi.org/10.1016/j.cell.2005.11.044

    Article  CAS  PubMed  Google Scholar 

  12. Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483(7388):218–221. https://doi.org/10.1038/nature10815

    Article  CAS  PubMed  Google Scholar 

  13. Rincon M, Muzumdar R, Atzmon G, Barzilai N (2004) The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev 125(6):397–403

    Article  CAS  Google Scholar 

  14. Lee N, Kim DK, Kim ES, Park SJ, Kwon JH, Shin J, Park SM, Moon YH, Wang HJ, Gho YS, Choi KY (2014) Comparative interactomes of SIRT6 and SIRT7: implication of functional links to aging. Proteomics 14(13–14):1610–1622. https://doi.org/10.1002/pmic.201400001

    Article  CAS  PubMed  Google Scholar 

  15. Ianni A, Kumari P, Tarighi S, Simonet NG, Popescu D, Guenther S, Holper S, Schmidt A, Smolka C, Yue S, Kruger M, Fiorillo C, Vaquero A, Bober E, Braun T (2021) SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress. Proc Natl Acad Sci U S A 118(5). https://doi.org/10.1073/pnas.2015339118

  16. Liu Z, Qian M, Tang X, Hu W, Sun S, Li G, Zhang S, Meng F, Cao X, Sun J, Xu C, Tan B, Pang Q, Zhao B, Wang Z, Guan Y, Ruan X, Liu B (2019) SIRT7 couples light-driven body temperature cues to hepatic circadian phase coherence and gluconeogenesis. Nat Metab 1(11):1141–1156. https://doi.org/10.1038/s42255-019-0136-6

    Article  CAS  PubMed  Google Scholar 

  17. Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO, Schoonjans K, Auwerx J (2014) A SIRT7-dependent acetylation switch of GABPbeta1 controls mitochondrial function. Cell Metab 20(5):856–869. https://doi.org/10.1016/j.cmet.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  18. Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG, Liu B (2017) SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat Commun 8(1):318. https://doi.org/10.1038/s41467-017-00396-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li G, Tang X, Zhang S, Jin M, Wang M, Deng Z, Liu Z, Qian M, Shi W, Wang Z, Xie H, Li J, Liu B (2020) SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J 39(18):e104365. https://doi.org/10.15252/embj.2019104365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong L, Yu L, Li H, Shi L, Luo Z, Zhao H, Liu Z, Yin G, Yan X, Lin Z (2020) An NAD(+)-dependent deacetylase SIRT7 promotes HCC development through deacetylation of USP39. iScience 23(8):101351. https://doi.org/10.1016/j.isci.2020.101351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu YF, Xu XP, Lu XP, Zhu Q, Liu G, Bao YT, Wen H, Li YL, Gu W, Zhu WG (2020) SIRT7 activates p53 by enhancing PCAF-mediated MDM2 degradation to arrest the cell cycle. Oncogene 39(24):4650–4665. https://doi.org/10.1038/s41388-020-1305-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang WW, Angulo-Ibanez M, Lyu J, Kurra Y, Tong Z, Wu B, Zhang L, Sharma V, Zhou J, Lin H, Gao YQ, Li W, Chua KF, Liu WR (2019) A click chemistry approach reveals the chromatin-dependent Histone H3K36 deacylase nature of SIRT7. J Am Chem Soc 141(6):2462–2473. https://doi.org/10.1021/jacs.8b12083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405):114–118. https://doi.org/10.1038/nature11043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang M, Li Z, Zhang C, Lu X, Tu B, Cao Z, Li Y, Chen Y, Jiang L, Wang H, Wang L, Wang J, Liu B, Xu X, Wang H, Zhu WG (2019) SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Sci Adv 5(3):eaav1118. https://doi.org/10.1126/sciadv.aav1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu C, Zhang J, Zhang J, Liu B (2021) SIRT7 is a deacetylase of N4-acetylcytidine on ribosomal RNA. Genome Instab Dis 2(4):253–260. https://doi.org/10.1007/s42764-021-00046-x

    Article  CAS  Google Scholar 

  26. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L, Liang J, Cheng Z, Shi L, Shang Y, Yu W (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235. https://doi.org/10.1038/ncomms12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tong Z, Wang M, Wang Y, Kim DD, Grenier JK, Cao J, Sadhukhan S, Hao Q, Lin H (2017) SIRT7 Is an RNA-activated protein lysine deacylase. ACS Chem Biol 12(1):300–310. https://doi.org/10.1021/acschembio.6b00954

    Article  CAS  PubMed  Google Scholar 

  28. Tanabe K, Liu J, Kato D, Kurumizaka H, Yamatsugu K, Kanai M, Kawashima SA (2018) LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes. Sci Rep 8(1):2656. https://doi.org/10.1038/s41598-018-21060-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bao X, Liu Z, Zhang W, Gladysz K, Fung YME, Tian G, Xiong Y, Wong JWH, Yuen KWY, Li XD (2019) Glutarylation of Histone H4 Lysine 91 regulates chromatin dynamics. Mol Cell 76 (4):660–675 e669. https://doi.org/10.1016/j.molcel.2019.08.018

  30. Mitra N, Dey S (2020) Biochemical characterization of mono ADP ribosyl transferase activity of human sirtuin SIRT7 and its regulation. Arch Biochem Biophys 680:108226. https://doi.org/10.1016/j.abb.2019.108226

    Article  CAS  PubMed  Google Scholar 

  31. Yu AQ, Wang J, Jiang ST, Yuan LQ, Ma HY, Hu YM, Han XM, Tan LM, Wang ZX (2021) SIRT7-induced PHF5A decrotonylation regulates aging progress through alternative splicing-mediated downregulation of CDK2. Front Cell Dev Biol 9:710479. https://doi.org/10.3389/fcell.2021.710479

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yan WW, Liang YL, Zhang QX, Wang D, Lei MZ, Qu J, He XH, Lei QY, Wang YP (2018) Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Rep 19(12). https://doi.org/10.15252/embr.201846377

  33. Yu J, Qin B, Wu F, Qin S, Nowsheen S, Shan S, Zayas J, Pei H, Lou Z, Wang L (2017) Regulation of serine-threonine kinase Akt activation by NAD(+)-dependent deacetylase SIRT7. Cell Rep 18(5):1229–1240. https://doi.org/10.1016/j.celrep.2017.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun L, Fan G, Shan P, Qiu X, Dong S, Liao L, Yu C, Wang T, Gu X, Li Q, Song X, Cao L, Li X, Cui Y, Zhang S, Wang C (2016) Regulation of energy homeostasis by the ubiquitin-independent REGgamma proteasome. Nat Commun 7:12497. https://doi.org/10.1038/ncomms12497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102(6):703–710. https://doi.org/10.1161/CIRCRESAHA.107.164558

    Article  CAS  PubMed  Google Scholar 

  36. Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L (2016) SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J 35(14):1488–1503. https://doi.org/10.15252/embj.201593499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li G, Tang X (2020) SIRT7 activates quiescent hair follicle stem cells to ensure hair growth in mice. EMBO J 39(18):e104365. https://doi.org/10.15252/embj.2019104365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K, Fukuda T, Go C, Tasaki M, Uchimura K, Kadomatsu T, Tian Z, Smolka C, Sawa T, Takeya M, Tomizawa K, Ando Y, Araki E, Akaike T, Braun T, Oike Y, Bober E, Yamagata K (2014) SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab 19(4):712–721. https://doi.org/10.1016/j.cmet.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  39. Karim MF, Yoshizawa T, Sobuz SU, Sato Y, Yamagata K (2017) Sirtuin 7-dependent deacetylation of DDB1 regulates the expression of nuclear receptor TR4. Biochem Biophys Res Commun 490(2):423–428. https://doi.org/10.1016/j.bbrc.2017.06.057

    Article  CAS  PubMed  Google Scholar 

  40. Shin J, He M, Liu Y, Paredes S, Villanova L, Brown K, Qiu X, Nabavi N, Mohrin M, Wojnoonski K, Li P, Cheng HL, Murphy AJ, Valenzuela DM, Luo H, Kapahi P, Krauss R, Mostoslavsky R, Yancopoulos GD, Alt FW, Chua KF, Chen D (2013) SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep 5(3):654–665. https://doi.org/10.1016/j.celrep.2013.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG, Liu B (2017) SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun 8(1):318. https://doi.org/10.1038/s41467-017-00396-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, Meng Y, Sun S, Li J, Liu B (2021) Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3beta-SIRT7 axis. Nat Commun 12(1):5058. https://doi.org/10.1038/s41467-021-25274-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  Google Scholar 

  44. Limbourg A, Korff T, Napp LC, Schaper W, Drexler H, Limbourg FP (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Protoc 4(12):1737–1746. https://doi.org/10.1038/nprot.2009.185

    Article  CAS  PubMed  Google Scholar 

  45. Ackert-Bicknell CL, Anderson LC, Sheehan S, Hill WG, Chang B, Churchill GA, Chesler EJ, Korstanje R, Peters LL (2015) Aging research using mouse models. Curr Protoc Mouse Biol 5(2):95–133. https://doi.org/10.1002/9780470942390.mo140195

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, Wang Y, Chen W, Yu X, Wang L, Chen H, Li C, Luo T, Deng H (2020) Elimination of senescent cells by beta-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30(7):574–589. https://doi.org/10.1038/s41422-020-0314-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Du Q, Zhu B, Zhai Q, Yu B (2017) Sirt3 attenuates doxorubicin-induced cardiac hypertrophy and mitochondrial dysfunction via suppression of Bnip3. Am J Transl Res 9(7):3360–3373

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Min LJ, Mogi M, Iwanami J, Li JM, Sakata A, Fujita T, Tsukuda K, Iwai M, Horiuchi M (2007) Cross-talk between aldosterone and angiotensin II in vascular smooth muscle cell senescence. Cardiovasc Res 76(3):506–516. https://doi.org/10.1016/j.cardiores.2007.07.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (grant no. 82061160495 to BL) and the Shenzhen Municipal Commission of Science and Technology Innovation (grant no. ZDSYS20190902093401689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, S., Xia, X., Wang, M., Liu, B. (2023). Investigating Physiopathological Roles for Sirtuins in a Mouse Model. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2788-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2787-7

  • Online ISBN: 978-1-0716-2788-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics