Skip to main content

Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2589))

Abstract

Genome integrity is constantly challenged by various processes including DNA damage, structured DNA, transcription, and DNA-protein crosslinks. During DNA replication, active replication forks that encounter these obstacles can result in their stalling and collapse. Accurate DNA replication requires the ability of forks to navigate these threats, which is aided by DNA repair proteins. Histone acetylation participates in this process through an ability to signal and recruit proteins to regions of replicating DNA. For example, the histone acetyltransferase PCAF promotes the recruitment of the DNA repair factors MRE11 and EXO1 to stalled forks by acetylating histone H4 at lysine 8 (H4K8ac). These highly dynamic processes can be detected and analyzed using a modified proximity ligation assay (PLA) method, known as SIRF (in situ protein interactions with nascent DNA replication forks). This single-cell assay combines PLA with EdU-coupled Click-iT chemistry reactions and fluorescence microscopy to detect these interactions at sites of replicating DNA. Here we provide a detailed protocol utilizing SIRF that detects the HAT PCAF and histone acetylation at replication forks. This technique provides a robust methodology to determine protein recruitment and modifications at the replication fork with single-cell resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loeb LA, Monnat RJ Jr (2008) DNA polymerases and human disease. Nat Rev Genet 9(8):594–604. https://doi.org/10.1038/nrg2345

    Article  CAS  PubMed  Google Scholar 

  2. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9. https://doi.org/10.1038/ncb2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boos D, Ferreira P (2019) Origin firing regulations to control genome replication timing. Genes (Basel) 10(3). https://doi.org/10.3390/genes10030199

  4. Fragkos M, Ganier O, Coulombe P, Mechali M (2015) DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16(6):360–374. https://doi.org/10.1038/nrm4002

    Article  CAS  PubMed  Google Scholar 

  5. Takeda DY, Dutta A (2005) DNA replication and progression through S phase. Oncogene 24(17):2827–2843. https://doi.org/10.1038/sj.onc.1208616

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  7. Gaillard H, Garcia-Muse T, Aguilera A (2015) Replication stress and cancer. Nat Rev Cancer 15(5):276–289. https://doi.org/10.1038/nrc3916

    Article  CAS  PubMed  Google Scholar 

  8. Burhans WC, Weinberger M (2007) DNA replication stress, genome instability and aging. Nucleic Acids Res 35(22):7545–7556. https://doi.org/10.1093/nar/gkm1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim JJ, Lee SY, Choi JH, Woo HG, Xhemalce B, Miller KM (2020) PCAF-mediated histone acetylation promotes replication fork degradation by MRE11 and EXO1 in BRCA-deficient cells. Mol Cell 80(2):327–344. e328. https://doi.org/10.1016/j.molcel.2020.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Flynn RL, Zou L (2011) ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci 36(3):133–140. https://doi.org/10.1016/j.tibs.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  11. Berti M, Cortez D, Lopes M (2020) The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Biol 21(10):633–651. https://doi.org/10.1038/s41580-020-0257-5

    Article  CAS  PubMed  Google Scholar 

  12. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145(4):529–542. https://doi.org/10.1016/j.cell.2011.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hashimoto Y, Ray Chaudhuri A, Lopes M, Costanzo V (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17(11):1305–1311. https://doi.org/10.1038/nsmb.1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schlacher K, Wu H, Jasin M (2012) A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22(1):106–116. https://doi.org/10.1016/j.ccr.2012.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng W, Jasin M (2017) Homologous recombination and replication fork protection: BRCA2 and more! Cold Spring Harb Symp Quant Biol 82:329–338. https://doi.org/10.1101/sqb.2017.82.035006

    Article  PubMed  Google Scholar 

  16. Fradet-Turcotte A, Sitz J, Grapton D, Orthwein A (2016) BRCA2 functions: from DNA repair to replication fork stabilization. Endocr Relat Cancer 23(10):T1–T17. https://doi.org/10.1530/ERC-16-0297

    Article  CAS  PubMed  Google Scholar 

  17. Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791. https://doi.org/10.1038/sj.onc.1206678

    Article  CAS  PubMed  Google Scholar 

  18. Quinet A, Lemacon D, Vindigni A (2017) Replication fork reversal: Players and guardians. Mol Cell 68(5):830–833. https://doi.org/10.1016/j.molcel.2017.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tarsounas M, Sung P (2020) The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol 21(5):284–299. https://doi.org/10.1038/s41580-020-0218-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong N, Lafarga V, Calvo JA, Panzarino NJ, John S, Day A, Crespo AV, Shen B, Starnes LM, de Ruiter JR, Daniel JA, Konstantinopoulos PA, Cortez D, Cantor SB, Fernandez-Capetillo O, Ge K, Jonkers J, Rottenberg S, Sharan SK, Nussenzweig A (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535(7612):382–387. https://doi.org/10.1038/nature18325

    Article  CAS  PubMed  Google Scholar 

  21. Rondinelli B, Gogola E, Yucel H, Duarte AA, van de Ven M, van der Sluijs R, Konstantinopoulos PA, Jonkers J, Ceccaldi R, Rottenberg S, D’Andrea AD (2017) EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol 19(11):1371–1378. https://doi.org/10.1038/ncb3626

    Article  CAS  PubMed  Google Scholar 

  22. Fournier LA, Kumar A, Stirling PC (2018) Chromatin as a platform for modulating the replication stress response. Genes (Basel) 9(12). https://doi.org/10.3390/genes9120622

  23. Hsu CL, Chong SY, Lin CY, Kao CF (2021) Histone dynamics during DNA replication stress. J Biomed Sci 28(1):48. https://doi.org/10.1186/s12929-021-00743-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhaskara S, Jacques V, Rusche JR, Olson EN, Cairns BR, Chandrasekharan MB (2013) Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics Chromatin 6(1):27. https://doi.org/10.1186/1756-8935-6-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee SY, Kim JJ, Miller KM (2021) Bromodomain proteins: protectors against endogenous DNA damage and facilitators of genome integrity. Exp Mol Med 53(9):1268–1277. https://doi.org/10.1038/s12276-021-00673-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheon Y, Kim H, Park K, Kim M, Lee D (2020) Dynamic modules of the coactivator SAGA in eukaryotic transcription. Exp Mol Med 52(7):991–1003. https://doi.org/10.1038/s12276-020-0463-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim JJ, Lee SY, Gong F, Battenhouse AM, Boutz DR, Bashyal A, Refvik ST, Chiang CM, Xhemalce B, Paull TT, Brodbelt JS, Marcotte EM, Miller KM (2019) Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev 33(23–24):1751–1774. https://doi.org/10.1101/gad.331231.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26(37):5341–5357. https://doi.org/10.1038/sj.onc.1210604

    Article  CAS  PubMed  Google Scholar 

  29. Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D (2011) Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25(12):1320–1327. https://doi.org/10.1101/gad.2053211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Milutinovic S, Zhuang Q, Szyf M (2002) Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 277(23):20974–20978. https://doi.org/10.1074/jbc.M202504200

    Article  CAS  PubMed  Google Scholar 

  31. Bhaskara S (2015) Histone deacetylases 1 and 2 regulate DNA replication and DNA repair: potential targets for genome stability-mechanism-based therapeutics for a subset of cancers. Cell Cycle 14(12):1779–1785. https://doi.org/10.1080/15384101.2015.1042634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roy S, Luzwick JW, Schlacher K (2018) SIRF: Quantitative in situ analysis of protein interactions at DNA replication forks. J Cell Biol 217(4):1521–1536. https://doi.org/10.1083/jcb.201709121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Petruk S, Cai J, Sussman R, Sun G, Kovermann SK, Mariani SA, Calabretta B, McMahon SB, Brock HW, Iacovitti L, Mazo A (2017) Delayed accumulation of H3K27me3 on nascent DNA Is essential for recruitment of transcription factors at early stages of stem cell differentiation. Mol Cell 66(2):247–257. e245. https://doi.org/10.1016/j.molcel.2017.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Branzei D, Giannattasio M (2018) SIRFing the replication fork: assessing protein interactions with nascent DNA. J Cell Biol 217(4):1177–1179. https://doi.org/10.1083/jcb.201802083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG, Landegren U (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45(3):227–232. https://doi.org/10.1016/j.ymeth.2008.06.014

    Article  CAS  PubMed  Google Scholar 

  36. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3(12):995–1000. https://doi.org/10.1038/nmeth947

    Article  CAS  PubMed  Google Scholar 

  37. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477. https://doi.org/10.1038/nbt0502-473

    Article  CAS  PubMed  Google Scholar 

  38. Alam MS (2018) Proximity Ligation Assay (PLA). Curr Protoc Immunol 123(1):e58. https://doi.org/10.1002/cpim.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moses JE, Moorhouse AD (2016) Correction: The growing applications of click chemistry. Chem Soc Rev 45(24):6888. https://doi.org/10.1039/c6cs90108e

    Article  CAS  PubMed  Google Scholar 

  40. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work in the K.M.M. laboratory was supported by the National Institutes of Health, National Cancer Institute (R01CA198279 and R01CA201268). The J.K. laboratory was supported by the National Research Foundation of Korea (NRF-2022R1C1C1007759).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Jin Kim or Kyle M. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, S.Y., Kim, J.J., Miller, K.M. (2023). Single-Cell Analysis of Histone Acetylation Dynamics at Replication Forks Using PLA and SIRF. In: Krämer, O.H. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 2589. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2788-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2788-4_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2787-7

  • Online ISBN: 978-1-0716-2788-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics