Skip to main content

In Vitro Biological Testing of Dental Materials

  • Protocol
  • First Online:
Oral Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2588))

Abstract

Dental materials are specially fabricated materials designed for use in dentistry. A variety of materials may be used, including cements, impression, lining, and dental restorative materials. Some of these dental materials provide temporary dressings while others are more permanent and are in contact with host tissue for prolonged periods of time. Consequently, newly developed dental materials not only require mechanical, chemical, and physical testing but also require in vitro analysis to ensure their safety and biocompatibility. The current chapter provides background on dental material characterization and a protocol for its in vitro biological testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Administration USFaD. (2020). Classify your medical device. https://www.fda.gov/medical-devices/overview-device-regulation/classify-your-medical-device. Accessed 15 Dec 2021

  2. Camilleri J, Arias Moliz T, Bettencourt A, Costa J, Martins F, Rabadijeva D, Rodriguez D, Visai L, Combes C, Farrugia C, Koidis P, Neves C (2020) Standardization of antimicrobial testing of dental devices. Dent Mater 36(3):e59–e73. https://doi.org/10.1016/j.dental.2019.12.006

    Article  CAS  Google Scholar 

  3. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953. https://doi.org/10.1016/j.biomaterials.2008.04.023

    Article  CAS  Google Scholar 

  4. Minamikawa H, Ikeda T, Att W, Hagiwara Y, Hirota M, Tabuchi M, Aita H, Park W, Ogawa T (2014) Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V. J Biomed Mater Res A 102(10):3618–3630. https://doi.org/10.1002/jbm.a.35030

    Article  CAS  Google Scholar 

  5. Mattioli-Belmonte M, Natali D, Tosi G, Torricelli P, Totaro I, Zizzi A, Fini M, Sabbatini S, Giavaresi G, Biagini G (2006) Resin-based dentin restorative materials under accelerated ageing: bio-functional behavior. Int J Artif Organs 29(10):1000–1011. https://doi.org/10.1177/039139880602901011

    Article  CAS  Google Scholar 

  6. Khampang S, Cho IK, Punyawai K, Gill B, Langmo JN, Nath S, Greeson KW, Symosko KM, Fowler KL, Tian S, Statz JP, Steves AN, Parnpai R, White MA, Hennebold JD, Orwig KE, Simerly CR, Schatten G, Easley C (2021) Blastocyst development after fertilization with in vitro spermatids derived from nonhuman primate embryonic stem cells. F S Sci 2(4):365–375. https://doi.org/10.1016/j.xfss.2021.09.001

    Article  Google Scholar 

  7. Shaw SW, David AL, De Coppi P (2011) Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 23(2):109–116. https://doi.org/10.1097/GCO.0b013e32834457b1

    Article  Google Scholar 

  8. Jaroch K, Taczynska P, Czechowska M, Bogusiewicz J, Luczykowski K, Burlikowska K, Bojko B (2021) One extraction tool for in vitro-in vivo extrapolation? SPME-based metabolomics of in vitro 2D, 3D, and in vivo mouse melanoma models. J Pharm Anal 11(5):667–674. https://doi.org/10.1016/j.jpha.2021.03.005

    Article  Google Scholar 

  9. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024. https://doi.org/10.1242/jcs.079509

    Article  CAS  Google Scholar 

  10. Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845. https://doi.org/10.1038/nrm2236

    Article  CAS  Google Scholar 

  11. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, Ibbs M, Blizniak R, Luczewski L, Lamperska K (2018) 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 14(4):910–919. https://doi.org/10.5114/aoms.2016.63743

    Article  CAS  Google Scholar 

  12. Millennium WHOSGotBoMCatSotN (2003) The burden of musculoskeletal conditions at the start of the new millenium: report of a WHO scientific group. World Health Organization, Geneva

    Google Scholar 

  13. Arora M (2013) Cell culture media: a review. Mater methods 3(175):24

    Google Scholar 

  14. Yao T, Asayama Y (2017) Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol 16(2):99–117. https://doi.org/10.1002/rmb2.12024

    Article  Google Scholar 

  15. Yang H (1991) Selection of culture media for human and rabbit corneal epithelia. Zhonghua Yan Ke Za Zhi 27(6):351–353

    CAS  Google Scholar 

  16. Clifford WJ, Anellis A, Ross EW (1974) Evaluation of media, time and temperature of incubation, and method of enumeration of several strains of clostridium-perfringens spores. Appl Microbiol 27(4):784–792. https://doi.org/10.1128/Aem.27.4.784-792.1974

    Article  CAS  Google Scholar 

  17. Andre CB, Dos Santos A, Pfeifer CS, Giannini M, Girotto EM, Ferracane JL (2018) Evaluation of three different decontamination techniques on biofilm formation, and on physical and chemical properties of resin composites. J Biomed Mater Res B Appl Biomater 106(3):945–953. https://doi.org/10.1002/jbm.b.33907

    Article  CAS  Google Scholar 

  18. Prideaux M, Wijenayaka AR, Kumarasinghe DD, Ormsby RT, Evdokiou A, Findlay DM, Atkins GJ (2014) SaOS2 osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Calcif Tissue Int 95(2):183–193. https://doi.org/10.1007/s00223-014-9879-y

    Article  CAS  Google Scholar 

  19. Raman H (2005) An organic bovine hydroxyapatite-PLGA composites for bone tissue engineering. Masters thesis. University of Kentucky, Kentucky

    Google Scholar 

  20. Ratnayake JT, Ross ED, Dias GJ, Shanafelt KM, Taylor SS, Gould ML, Guan GZ, Cathro PR (2020) Preparation, characterisation and in-vitro biocompatibility study of a bone graft developed from waste bovine teeth for bone regeneration. Materials Today Communications 22:100732. https://doi.org/10.1016/j.mtcomm.2019.100732. ARTN 100732

    Article  CAS  Google Scholar 

  21. Ratnayake JTB, Gould ML, Shavandi A, Mucalo M, Dias GJ (2017) Development and characterization of a xenograft material from N ew Z ealand sourced bovine cancellous bone. J Biomed Mater Res B Appl Biomater 105(5):1054–1062

    Article  CAS  Google Scholar 

  22. Tredwin CJ (2009) Sol-gel derived hydroxyapatite. Doctor of Philosophy, University College London, Fluorhydroxyapatite and Fluorapatite Coatings for Titanium Implants

    Google Scholar 

  23. ATCC (1925) Cell products. https://www.atcc.org/. Accessed 23 Mar 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jithendra Ratnayake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ratnayake, J., Camilleri, J., Haththotuwa, T.N., Huang, J. (2023). In Vitro Biological Testing of Dental Materials. In: Seymour, G.J., Cullinan, M.P., Heng, N.C., Cooper, P.R. (eds) Oral Biology. Methods in Molecular Biology, vol 2588. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2780-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2780-8_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2779-2

  • Online ISBN: 978-1-0716-2780-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics