Skip to main content

Characterization of the Expression and Role of Histone Acetylation and Deacetylation in Dental Pulp Cells

  • Protocol
  • First Online:
Oral Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2588))

  • 1572 Accesses

Abstract

Histone acetylation and deacetylation of DNA-associated proteins have been shown to alter the architecture of chromatin, affecting gene expression and controlling a wide range of biological events. These events are balanced by two sets of cellular enzymes, histone-deacetylases (HDACs) and histone acetyl-transferases (HATs). Pharmacological inhibition of histone-deacetylases (HDACs) using HDAC-inhibitors (HDACis) has been shown to promote dental pulp cell reparative processes with therapeutic implications in various fields including regenerative dentistry. To date, pan-HDACi have generally been used rather than isoform-specific HDACi targeting, despite the fact that HDAC-specific inhibitors have been developed to target HDACs in several tissues. To identify potential therapeutic targets in the tooth, the expression and distribution of HDAC-isoforms need to be analyzed. This chapter focuses on techniques to analyze expression, location, and distribution of individual HDAC-isoforms under mineralizing conditions using both histology and cell biology, along with a description of basic techniques for culturing and mineralization of rodent dental pulp cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  Google Scholar 

  2. Kelly TK, De Carvalho DD, Jones PA (2010) Epigenetic modifications as therapeutic targets. Nat Biotechnol 28(10):1069–1078

    Article  CAS  Google Scholar 

  3. Huynh NC, Everts V, Salingcarnboriboon R, Ampornaramveth RS (2017) Histone deacetylases and their roles in mineralized tissue regeneration. Bone Rep 7:33–40

    Article  Google Scholar 

  4. Yamauchi Y, Cooper PR, Shimizu E, Kobayashi Y, Smith AJ, Duncan HF (2020) Histone acetylation as a regenerative target in the dentine-pulp complex. Front Genet 11:1. https://doi.org/10.3389/fgene.2020.00001

    Article  CAS  Google Scholar 

  5. Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S (2014) Use of epigenetic drugs in disease: an overview. Genet Epigenet 6:9–19

    Article  CAS  Google Scholar 

  6. Gopinathan G, Kolokythas A, Luan X, Diekwisch TG (2013) Epigenetic marks define the lineage and differentiation potential of two distinct neural crest-derived intermediate odontogenic progenitor populations. Stem Cells Dev 22(12):1763–1778

    Article  CAS  Google Scholar 

  7. Duncan HF, Smith AJ, Fleming GJ, Partridge NC, Shimizu E, Moran GP et al (2016) The histone-deacetylase-inhibitor suberoylanilide hydroxamic acid promotes dental pulp repair mechanisms through modulation of matrix metalloproteinase-13 activity. J Cell Physiol 231(4):798–816

    Article  CAS  Google Scholar 

  8. Wapenaar H, Dekker FJ (2016) Histone acetyltransferases: challenges in targeting bi-substrate enzymes. Clin Epigenetics 8:59

    Article  Google Scholar 

  9. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713. https://doi.org/10.1101/cshperspect.a018713

    Article  Google Scholar 

  10. Klinz FJ, Korkmaz Y, Bloch W, Raab WH, Addicks K (2012) Histone deacetylases 2 and 9 are coexpressed and nuclear localized in human molar odontoblasts in vivo. Histochem Cell Biol 137(5):697–702

    Article  CAS  Google Scholar 

  11. Jin H, Park JY, Choi H, Choung PH (2013) HDAC inhibitor trichostatin A promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Eng Part A 19(5-6):613–624

    Article  CAS  Google Scholar 

  12. Paino F, La Noce M, Tirino V, Naddeo P, Desiderio V, Pirozzi G et al (2014) Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32(1):279–289

    Article  CAS  Google Scholar 

  13. Huynh NC, Everts V, Pavasant P, Ampornaramveth RS (2016) Inhibition of histone deacetylases enhances the osteogenic differentiation of human periodontal ligament cells. J Cell Biochem 117(6):1384–1395

    Article  CAS  Google Scholar 

  14. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X et al (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21(14):1790–1802

    Article  CAS  Google Scholar 

  15. Ricarte F, Nakatani T, Partridge N (2016) PTH signaling and epigenetic control of bone remodeling. Curr Mol Biol Rep 2(1):55–61

    Google Scholar 

  16. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784

    Article  CAS  Google Scholar 

  17. Shuttleworth SJ, Bailey SG, Townsend PA (2010) Histone Deacetylase inhibitors: new promise in the treatment of immune and inflammatory diseases. Curr Drug Targets 11(11):1430–1438

    Article  CAS  Google Scholar 

  18. Kwon A, Park HJ, Baek K, Lee HL, Park JC, Woo KM et al (2012) Suberoylanilide hydroxamic acid enhances odontoblast differentiation. J Dent Res 91(5):506–512

    Article  CAS  Google Scholar 

  19. Luo Z, Wang Z, He X, Liu N, Liu B, Sun L et al (2018) Effects of histone deacetylase inhibitors on regenerative cell responses in human dental pulp cells. Int Endod J 51(7):767–778

    Article  CAS  Google Scholar 

  20. Lee EC, Kim YM, Lim HM, Ki GE, Seo YK (2020) The histone deacetylase inhibitor (MS-275) promotes differentiation of human dental pulp stem cells into odontoblast-like cells independent of the MAPK signaling system. Int J Mol Sci 21(16)

    Google Scholar 

  21. Smith AJ, Duncan HF, Diogenes A, Simon S, Cooper PR (2016) Exploiting the bioactive properties of the Dentin-Pulp complex in regenerative endodontics. J Endod 42(1):47–56

    Article  Google Scholar 

  22. Cantley MD, Zannettino ACW, Bartold PM, Fairlie DP, Haynes DR (2017) Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone 95:162–174

    Article  CAS  Google Scholar 

  23. Duncan HF, Smith AJ, Fleming GJ, Reid C, Smith G, Cooper PR (2017) Release of bio-active dentine extracellular matrix components by histone deacetylase inhibitors (HDACi). Int Endod J 50(1):24–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry F. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yamauchi, Y., Duncan, H.F. (2023). Characterization of the Expression and Role of Histone Acetylation and Deacetylation in Dental Pulp Cells. In: Seymour, G.J., Cullinan, M.P., Heng, N.C., Cooper, P.R. (eds) Oral Biology. Methods in Molecular Biology, vol 2588. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2780-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2780-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2779-2

  • Online ISBN: 978-1-0716-2780-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics