Skip to main content

A Guide to Trajectory Inference and RNA Velocity

  • Protocol
  • First Online:
Single Cell Transcriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2584))

Abstract

Technological developments have led to an explosion of high-throughput single-cell data, which are revealing unprecedented perspectives on cell identity. Recently, significant attention has focused on investigating, from single-cell RNA-sequencing (scRNA-seq) data, cellular dynamic processes, such as cell differentiation, cell cycle and cell (de)activation. In particular, trajectory inference methods, by ordering cells along a trajectory, allow estimating a differentiation tree of cells. While trajectory inference tools typically work with gene expression levels, common scRNA-seq protocols allow the identification and quantification of unspliced pre-mRNAs and mature spliced mRNAs for each gene. By exploiting the abundance of unspliced and spliced mRNA, one can infer the RNA velocity of individual cells, i.e., the time derivative of the gene expression state of cells. Whereas traditional trajectory inference methods reconstruct cellular dynamics given a population of cells of varying maturity, RNA velocity relies on a dynamical model describing splicing dynamics. Here, we initially discuss conceptual and theoretical aspects of both approaches, then illustrate how they can be combined together, and finally present an example use case on real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    Article  CAS  Google Scholar 

  2. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V et al (2018) RNA velocity of single cells. Nature 560:494–498

    Article  Google Scholar 

  3. Zeisel A, Köstler WJ, Molotski N, Tsai JM, Krauthgamer R, Jacob-Hirsch J et al (2011) Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol Syst Biol 7:529

    Article  Google Scholar 

  4. Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC (2017) Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods 14:565–571

    Article  CAS  Google Scholar 

  5. Kiselev VY, Andrews TS, Hemberg M (2019) Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet 20:273–282

    Article  CAS  Google Scholar 

  6. McInnes L, Healy J, Melville J (2018) UMAP: uniform manifold approximation and projection for dimension reduction. arXiv

    Google Scholar 

  7. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  8. Hicks SC, Townes FW, Teng M, Irizarry RA (2018) Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19:562–578

    Article  Google Scholar 

  9. Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. Genome Biol 20:295

    Article  CAS  Google Scholar 

  10. Srivastava A, Malik L, Smith T, Sudbery I, Patro R (2019) Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol 20:65

    Article  Google Scholar 

  11. He D, Zakeri M, Sarkar H, Soneson C, Srivastava A, Patro R (2021) Alevin-fry unlocks rapid, accurate, and memory-frugal quantification of single-cell RNA-seq data. bioRxiv

    Google Scholar 

  12. Melsted P, Booeshaghi AS, Liu L, Gao F, Lu L, Min KHJ et al (2021) Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat Biotechnol 39:813–818

    Article  CAS  Google Scholar 

  13. Luecken MD, Theis FJ (2019) Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol 15:e8746

    Article  Google Scholar 

  14. Bastidas-Ponce A, Tritschler S, Dony L, Scheibner K, Tarquis-Medina M, Salinno C et al (2019) Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development 146:dev173849

    Article  CAS  Google Scholar 

  15. Diaconis P, Goel S, Holmes S (2008) Horseshoes in multidimensional scaling and local kernel methods. Ann Appl Stat 2:777–807

    Article  Google Scholar 

  16. Saelens W, Cannoodt R, Todorov H, Saeys Y (2019) A comparison of single-cell trajectory inference methods. Nat Biotechnol 37:547–554

    Article  CAS  Google Scholar 

  17. Ji Z, Ji H (2016) TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res 44:e117

    Article  Google Scholar 

  18. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N et al (2018) Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19:477

    Article  Google Scholar 

  19. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502

    Article  CAS  Google Scholar 

  20. Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B et al (2019) PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol 20:59

    Article  Google Scholar 

  21. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L et al (2020) Orchestrating single-cell analysis with Bioconductor. Nat Methods 17:137–145

    Article  CAS  Google Scholar 

  22. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ (2020) Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol 38:1408–1414

    Article  CAS  Google Scholar 

  23. Hastie T, Tibshirani R, Friedman J (2013) The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media

    Google Scholar 

  24. Chari T, Banerjee J, Pachter L (2021) The specious art of single-cell genomics. bioRxiv

    Google Scholar 

  25. Lange M, Bergen V, Klein M, Setty M, Reuter B, Bakhti M et al (2020) CellRank for directed single-cell fate mapping. bioRxiv

    Google Scholar 

  26. Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13:845–848

    Article  CAS  Google Scholar 

  27. Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe’er D (2019) Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol 37:451–460

    Article  CAS  Google Scholar 

  28. Barile M, Imaz-Rosshandler I, Inzani I, Ghazanfar S, Nichols J, Marioni JC et al (2021) Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation. Genome Biol 22:1–22

    Article  Google Scholar 

  29. Bergen V, Soldatov RA, Kharchenko PV, Theis FJ (2021) RNA velocity-current challenges and future perspectives. Mol Syst Biol 17:e10282

    Article  CAS  Google Scholar 

  30. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049

    Article  CAS  Google Scholar 

  31. Zappia L, Lun A (2021) zellkonverter: Conversion between scRNA-seq objects. R package version 1.4.0

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Marius Lange and Fabian Theis for their precious comments and suggestions. KVdB is a postdoctoral fellow of the Belgian American Educational Foundation (BAEF) and is supported by the Research Foundation Flanders (FWO) grants 1246220N, G062219N, and V411821N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Tiberi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weiler, P., Van den Berge, K., Street, K., Tiberi, S. (2023). A Guide to Trajectory Inference and RNA Velocity. In: Calogero, R.A., Benes, V. (eds) Single Cell Transcriptomics. Methods in Molecular Biology, vol 2584. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2756-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2756-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2755-6

  • Online ISBN: 978-1-0716-2756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics