Skip to main content

Conventional and Spectral Karyotyping of Murine Cerebellar Granule Neuron Progenitors

  • Protocol
  • First Online:
Microcephaly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2583))

  • 385 Accesses

Abstract

Karyotyping remains an invaluable tool to researchers exploring the cause and consequence of genomic instability in biologic systems. It allows investigators to survey the entire chromosome complement in individual cells and in a single experiment, visualize, and measure different forms or features of instability such as aneuploidy, ongoing chromosomal instability, DNA damage/mis-repair, telomere erosion, chromosome mis-segregation, or defects in cell cycle progression. This chapter describes the combined use of conventional (DAPI-banding) and spectral karyotyping (SKY) to characterize genomic instability in murine cerebellar granule neuron progenitors (CGNPs), using CGNPs with conditional deletion of Atr as a positive control for chromosomal rearrangements. Protocols for preparing slides (metaphase spreads) from fixed cell suspension, DAPI-banding, and spectral karyotyping (SKY) are included. Pertinent aspects of image acquisition and analysis are detailed. These protocols can likely be adapted to other tissue types (murine or human).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitelman F, Johansson B, Mertens F (eds) (2016) Mitelman database of chromosome aberrations and gene fusions in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman

  2. Codner GF, Lindner L, Caulder A et al (2016) Aneuploidy screening of embryonic stem cell clones by metaphase karyotyping and droplet digital polymerase chain reaction. BMC Cell Biol 17:30

    Article  PubMed  PubMed Central  Google Scholar 

  3. McKinlay Gardner RJ, Amor DJ Gardner and Sutherland’s chromosome abnormalities and genetic counseling, 5th edn. Oxford University Press, Oxford. Published: 06 March 2018

    Google Scholar 

  4. Tijo HJ, Levan A (1956) The chromosome numbers of man. Hereditas 42:1–6

    Article  Google Scholar 

  5. Schreck RR, Distèche CM (2001) Chromosome banding techniques. Curr Protoc Hum Genet Chapter 4:Unit 4.2

    CAS  Google Scholar 

  6. Schröck E, du Manoir S, Veldman T et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  PubMed  Google Scholar 

  7. Liyanage M, Coleman A, du Manoir S et al (1996) Multicolour spectral karyotyping of mouse chromosomes. Nat Genet 14:312–315

    Article  CAS  PubMed  Google Scholar 

  8. Nanjangud G, Rao PH, Hegde A et al (2002) Spectral karyotyping identifies new rearrangements, translocations, and clinical associations in diffuse large B-cell lymphoma. Blood 99:2554–2561

    Article  CAS  PubMed  Google Scholar 

  9. Schrock E, Zschieschang P, O'Brien P et al (2006) Spectral karyotyping of human, mouse, rat and ape chromosomes-applications for genetic diagnostics and research. Cytogenet Genome Res 114:199–221

    Article  CAS  PubMed  Google Scholar 

  10. Lang PY, Nanjangud GJ, Sokolsky-Papkov M et al (2016) ATR maintains chromosomal integrity during postnatal cerebellar neurogenesis and is required for medulloblastoma formation. Development 143:4038–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee C, Gisselsson D, Jin C et al (2001) Limitations of chromosome classification by multicolor karyotyping. Am J Hum Genet 68:1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JK, Choi YL, Kwon M, Park PJ (2016) Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu Rev Pathol 11:283–312

    Article  CAS  PubMed  Google Scholar 

  13. Davoli T, de Lange T (2011) The causes and consequences of polyploidy in normal development and cancer. Annu Rev Cell Dev Biol 27:585–610

    Article  CAS  PubMed  Google Scholar 

  14. Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Bio 18:175–186

    Article  CAS  Google Scholar 

  15. Verhaak RGW, Bafna V, Mischel PS (2019) Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat Rev Cancer 19:283–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bayani J, Squire J (2004) Multi-color FISH techniques. Curr Protoc Cell Biol Chapter 22:Unit 22.5

    PubMed  Google Scholar 

  17. McGowan-Jordan J, Simons A, Schmid M (eds) (2016) ISCN an international system for human cytogenetic nomenclature. S. Karger, Basel

    Google Scholar 

  18. Danford N (2012) The interpretation and analysis of cytogenetic data. Methods Mol Biol 817:93–120

    Article  CAS  PubMed  Google Scholar 

  19. Savage JR (1976) Classification and relationships of induced chromosomal structural changes. J Med Genet 2:103–122

    Article  Google Scholar 

  20. Garini Y, Macville M, du Manoir S et al (1996) Spectral karyotyping. Bioimaging 4:65–72

    Article  Google Scholar 

  21. Spurbeck JL, Zinsmeister AR, Meyer KJ, Jalal SM (1996) Dynamics of chromosome spreading. Am J Med Genet 61:387–393

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Molecular Cytogenetics Core is supported by the NIH-CCSG (P30 CA008748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gouri Nanjangud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nanjangud, G. (2023). Conventional and Spectral Karyotyping of Murine Cerebellar Granule Neuron Progenitors. In: Gershon, T. (eds) Microcephaly. Methods in Molecular Biology, vol 2583. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2752-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2752-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2751-8

  • Online ISBN: 978-1-0716-2752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics