Skip to main content

Dissociation of Cerebellar Granule Neuron Progenitors for Culture, FACS, Transcriptomics, and Molecular Biology

  • Protocol
  • First Online:
Microcephaly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2583))

Abstract

Brain growth reflects the proliferation dynamics of neural progenitors, and understanding brain growth requires molecular, genetic, and functional studies of these specific cells. Cerebellar granule neuron progenitors (CGNPs) proliferate in the early postnatal period in both mice and humans, to generate the largest population of neurons in the central nervous system. CGNPs present a large, spatially segregated source of neural progenitors with a consistent, well-characterized temporal pattern of proliferation and differentiation that facilitates analysis. Dissociating of CGNPs with the methods below will generate a suspension of primary neural progenitors harvested from the postnatal brain that may be used for diverse experimental analyses including cell culture, protein extraction, flow cytometry, metabolomic analysis, and transcriptomic analysis with single-cell resolution (scRNA-seq).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ten Donkelaar HJ, Lammens M (2009) Development of the human cerebellum and its disorders. Clin Perinatol 36:513–530

    Article  PubMed  Google Scholar 

  2. Marzban H, Del Bigio MR, Alizadeh J et al (2015) Cellular commitment in the developing cerebellum. Front Cell Neurosci 8:1–26

    Article  Google Scholar 

  3. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114

    Article  CAS  PubMed  Google Scholar 

  4. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    Article  PubMed  Google Scholar 

  5. Chizhikov V, Millen KJ (2003) Development and malformations of the cerebellum in mice. Mol Genet Metab 80:54–65

    Article  CAS  PubMed  Google Scholar 

  6. Garel C, Fallet-Bianco C, Guibaud L (2011) The fetal cerebellum: development and common malformations. J Child Neurol 26:1483–1492

    Article  PubMed  Google Scholar 

  7. Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382

    Article  CAS  PubMed  Google Scholar 

  8. Kenney AM (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130:15–28

    Article  CAS  PubMed  Google Scholar 

  9. Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    Article  CAS  PubMed  Google Scholar 

  10. Solecki DJ, Liu X, Tomoda T et al (2001) Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31:557–568

    Article  CAS  PubMed  Google Scholar 

  11. Lang PY, Nanjangud GJ, Sokolsky-Papkov M et al (2016) ATR maintains chromosomal integrity during postnatal cerebellar neurogenesis and is required for medulloblastoma formation. Development 143:4038–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krämer D, Minichiello L (2010) Mouse cell. Culture 633:233–239

    Google Scholar 

  13. Lee HY, Greene LA, Mason CA et al (2009) Isolation and culture of post-natal mouse cerebellar granule neuron progenitor cells and neurons. J Vis Exp 23:e990

    Google Scholar 

  14. Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100:384–396

    Article  CAS  PubMed  Google Scholar 

  15. Hatten ME, Gao W-Q, Morrison ME et al (1998) The cerebellum: purification and co-culture of identified cell populations. Cult Nerve Cells. G. Banker and K. Goslin, editors. MIT Press, Cambridge, MA, pp 419–459. https://cognet.mit.edu/book/culturing-nerve-cells

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Karin Ocasio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ocasio, J.K. (2023). Dissociation of Cerebellar Granule Neuron Progenitors for Culture, FACS, Transcriptomics, and Molecular Biology. In: Gershon, T. (eds) Microcephaly. Methods in Molecular Biology, vol 2583. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2752-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2752-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2751-8

  • Online ISBN: 978-1-0716-2752-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics