Skip to main content

Development of a Selectively-Bred Mouse Model of Dominance and Submissiveness: Technical Considerations

  • Protocol
  • First Online:
Psychiatric Vulnerability, Mood, and Anxiety Disorders

Part of the book series: Neuromethods ((NM,volume 190))

Abstract

Social interactions play an important role in the shaping of individual personalities and development of behavioral and physiological disturbances. Animal models represent a valuable tool in the study of the molecular and biochemical basis of social behaviors. Dominant–submissive relationship (DSR)-based models have been developed in both mice and rats for the purposes of studying the molecular basis of social behavior and psychotropic agent screening. These models have been established on the basis of the food competition paradigm. Whereas DSR models have been proven to be valid for drug testing, they have also been associated with different challenges, including low efficiency, experimental reproducibility, and testing time duration. To overcome these challenges, we employed the selective breeding approach, which has allowed us to develop mouse populations with strong characteristics of dominance and submissiveness. This model allows a dramatic increase in test efficiency, stability, and reproducibility as well as a substantial decrease in experimental duration. The selectively-bred dominant (Dom) and submissive (Sub) mice exhibit distinct differences in (a) stress-coping abilities, (b) responses to psychotropic agents, (c) inflammatory profiles, (d) gut microbiome profile, and (e) life span. Herein, we describe in detail the process of selective breeding as well as the behavioral, biochemical, and physiological characteristics of the Dom and Sub mice. We also discuss the different research directions that can be pursued by employing this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayala FJ (1972) Competition between species. Am Sci 60(3):348–357

    CAS  PubMed  Google Scholar 

  2. Camperio Ciani A (2000) When to get mad: adaptive significance of rage in animals. Psychopathology 33(4):191–197. https://doi.org/10.1159/000029142

    Article  CAS  PubMed  Google Scholar 

  3. Zentall TR (2006) Imitation: definitions, evidence, and mechanisms. Anim Cogn 9(4):335–353. https://doi.org/10.1007/s10071-006-0039-2

    Article  PubMed  Google Scholar 

  4. Hausberger M, Fureix C, Bourjade M, Wessel-Robert S, Richard-Yris MA (2012) On the significance of adult play: what does social play tell us about adult horse welfare? Die Naturwissenschaften 99(4):291–302. https://doi.org/10.1007/s00114-012-0902-8

    Article  CAS  PubMed  Google Scholar 

  5. Sirot E (2012) Negotiation may lead selfish individuals to cooperate: the example of the collective vigilance game. Proc Biol Sci 279(1739):2862–2867. https://doi.org/10.1098/rspb.2012.0097

    Article  PubMed  PubMed Central  Google Scholar 

  6. Casto KV, Edwards DA (2016) Testosterone, cortisol, and human competition. Horm Behav 82:21–37. https://doi.org/10.1016/j.yhbeh.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  7. Robinson EJ, Barker JL (2017) Inter-group cooperation in humans and other animals. Biol Lett 13(3). https://doi.org/10.1098/rsbl.2016.0793

  8. Sosa S (2016) The influence of gender, age, matriline and hierarchical rank on individual social position, role and interactional patterns in Macaca sylvanus at ‘La Forêt des Singes’: a multilevel social network approach. Front Psychol 7:529. https://doi.org/10.3389/fpsyg.2016.00529

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheng JT (2020) Dominance, prestige, and the role of leveling in human social hierarchy and equality. Curr Opin Psychol 33:238–244. https://doi.org/10.1016/j.copsyc.2019.10.004

    Article  PubMed  Google Scholar 

  10. Liu M, Chen BF, Rubenstein DR, Shen SF (2020) Social rank modulates how environmental quality influences cooperation and conflict within animal societies. Proc Biol Sci 287(1935):20201720. https://doi.org/10.1098/rspb.2020.1720

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lozano P, Gavrilets S, Sánchez A (2020) Cooperation, social norm internalization, and hierarchical societies. Sci Rep 10(1):15359. https://doi.org/10.1038/s41598-020-71664-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hickey J, Davidsen J (2019) Self-organization and time-stability of social hierarchies. PloS one 14(1):e0211403. https://doi.org/10.1371/journal.pone.0211403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith JE, van Vugt M (2020) Leadership and status in mammalian societies: context matters. Trends Cogn Sci 24(4):263–264. https://doi.org/10.1016/j.tics.2020.01.003

    Article  PubMed  Google Scholar 

  14. Fulenwider HD, Caruso MA, Ryabinin AE (2021) Manifestations of domination: assessments of social dominance in rodents. Genes Brain Behav:e12731. https://doi.org/10.1111/gbb.12731

  15. Williamson CM, Lee W, Romeo RD, Curley JP (2017) Social context-dependent relationships between mouse dominance rank and plasma hormone levels. Physiol Behav 171:110–119. https://doi.org/10.1016/j.physbeh.2016.12.038

    Article  CAS  PubMed  Google Scholar 

  16. Gorlova A, Ortega G, Waider J, Bazhenova N, Veniaminova E, Proshin A, Kalueff AV, Anthony DC, Lesch KP, Strekalova T (2020) Stress-induced aggression in heterozygous TPH2 mutant mice is associated with alterations in serotonin turnover and expression of 5-HT6 and AMPA subunit 2A receptors. J Affect Disord 272:440–451. https://doi.org/10.1016/j.jad.2020.04.014

    Article  CAS  PubMed  Google Scholar 

  17. Larrieu T, Cherix A, Duque A, Rodrigues J, Lei H, Gruetter R, Sandi C (2017) Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Curr Biol CB 27(14):2202–2210.e2204. https://doi.org/10.1016/j.cub.2017.06.027

    Article  CAS  PubMed  Google Scholar 

  18. Hone DW, Benton MJ (2005) The evolution of large size: how does Cope’s Rule work? Trends Ecol Evol 20(1):4–6. https://doi.org/10.1016/j.tree.2004.10.012

    Article  PubMed  Google Scholar 

  19. Johnson SL, Leedom LJ, Muhtadie L (2012) The dominance behavioral system and psychopathology: evidence from self-report, observational, and biological studies. Psychol Bull 138(4):692–743. https://doi.org/10.1037/a0027503

    Article  PubMed  PubMed Central  Google Scholar 

  20. O’Connor TM, O’Halloran DJ, Shanahan F (2000) The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM Mon J Assoc Physicians 93(6):323–333. https://doi.org/10.1093/qjmed/93.6.323

    Article  Google Scholar 

  21. Costa-Pinto FA, Cohn DW, Sa-Rocha VM, Sa-Rocha LC, Palermo-Neto J (2009) Behavior: a relevant tool for brain-immune system interaction studies. Ann N Y Acad Sci 1153:107–119. https://doi.org/10.1111/j.1749-6632.2008.03961.x

    Article  PubMed  Google Scholar 

  22. Pouwer F, Nefs G (2019) Anxiety is common and costly in T2DM – why psychology matters. Nat Rev Endocrinol 15(10):567–568. https://doi.org/10.1038/s41574-019-0244-0

    Article  CAS  PubMed  Google Scholar 

  23. Pouwer F, Schram MT, Iversen MM, Nouwen A, Holt RIG (2020) How 25 years of psychosocial research has contributed to a better understanding of the links between depression and diabetes. Diabet Med 37(3):383–392. https://doi.org/10.1111/dme.14227

    Article  CAS  PubMed  Google Scholar 

  24. Wang YH, Li JQ, Shi JF, Que JY, Liu JJ, Lappin JM, Leung J, Ravindran AV, Chen WQ, Qiao YL, Shi J, Lu L, Bao YP (2020) Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies. Mol Psychiatry 25(7):1487–1499. https://doi.org/10.1038/s41380-019-0595-x

    Article  PubMed  Google Scholar 

  25. Chase ID, Seitz K (2011) Self-structuring properties of dominance hierarchies a new perspective. Adv Genet 75:51–81. https://doi.org/10.1016/b978-0-12-380858-5.00001-0

    Article  PubMed  Google Scholar 

  26. Modolo L, Martin RD (2008) Reproductive success in relation to dominance rank in the absence of prime-age males in Barbary macaques. Am J Primatol 70(1):26–34. https://doi.org/10.1002/ajp.20452

    Article  PubMed  Google Scholar 

  27. Williamson CM, Lee W, DeCasien AR, Lanham A, Romeo RD, Curley JP (2019) Social hierarchy position in female mice is associated with plasma corticosterone levels and hypothalamic gene expression. Sci Rep 9(1):7324. https://doi.org/10.1038/s41598-019-43747-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dewsbury DA (1982) Dominance rank, copulatory behavior, and differential reproduction. Q Rev Biol 57(2):135–159. https://doi.org/10.1086/412672

    Article  CAS  PubMed  Google Scholar 

  29. Widdig A, Kessler MJ, Bercovitch FB, Berard JD, Duggleby C, Nürnberg P, Rawlins RG, Sauermann U, Wang Q, Krawczak M, Schmidtke J (2016) Genetic studies on the Cayo Santiago rhesus macaques: a review of 40 years of research. Am J Primatol 78(1):44–62. https://doi.org/10.1002/ajp.22424

    Article  PubMed  Google Scholar 

  30. File SE (1985) Animal models for predicting clinical efficacy of anxiolytic drugs: social behaviour. Neuropsychobiology 13(1-2):55–62. https://doi.org/10.1159/000118163

    Article  CAS  PubMed  Google Scholar 

  31. Koolhaas JM, Meerlo P, de Boer SF, Strubbe JH, Bohus B (1995) Social stress in rats: an animal model of depression? Acta Neuropsychiatr 7(2):27–29. https://doi.org/10.1017/s0924270800037479

    Article  CAS  PubMed  Google Scholar 

  32. Griez E (1984) Experimental models of anxiety. Problems and perspectives. Acta Psychiatrica Belgica 84:511–532

    CAS  PubMed  Google Scholar 

  33. Guy AP, Gardner CR (1985) Pharmacological characterisation of a modified social interaction model of anxiety in the rat. Neuropsychobiology 13(4):194–200. https://doi.org/10.1159/000118187

    Article  CAS  PubMed  Google Scholar 

  34. Broekkamp CL, Berendsen HH, Jenck F, Van Delft AM (1989) Animal models for anxiety and response to serotonergic drugs. Psychopathology 22(Suppl 1):2–12. https://doi.org/10.1159/000284620

    Article  PubMed  Google Scholar 

  35. Reppucci CJ, Veenema AH (2020) The social versus food preference test: a behavioral paradigm for studying competing motivated behaviors in rodents. MethodsX 7:101119. https://doi.org/10.1016/j.mex.2020.101119

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoshaw BA, Evans JC, Mueller B, Valentino RJ, Lucki I (2006) Social competition in rats: cell proliferation and behavior. Behav Brain Res 175(2):343–351. https://doi.org/10.1016/j.bbr.2006.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  37. Winkler D, Daher F, Wüstefeld L, Hammerschmidt K, Poggi G, Seelbach A, Krueger-Burg D, Vafadari B, Ronnenberg A, Liu Y, Kaczmarek L, Schlüter OM, Ehrenreich H, Dere E (2018) Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav Brain Res 352:35–45. https://doi.org/10.1016/j.bbr.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  38. Malatyńska E, Kostowski W (1984) The effect of antidepressant drugs on dominance behavior in rats competing for food. Pol J Pharmacol Pharm 36(5):531–540

    PubMed  Google Scholar 

  39. Malatynska E, Goldenberg R, Shuck L, Haque A, Zamecki P, Crites G, Schindler N, Knapp RJ (2002) Reduction of submissive behavior in rats: a test for antidepressant drug activity. Pharmacology 64(1):8–17. https://doi.org/10.1159/000056145

    Article  CAS  PubMed  Google Scholar 

  40. Malatynska E, Knapp RJ (2005) Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev 29(4–5):715–737. https://doi.org/10.1016/j.neubiorev.2005.03.014

    Article  PubMed  Google Scholar 

  41. Malatynska E, Pinhasov A, Crooke JJ, Smith-Swintosky VL, Brenneman DE (2007) Reduction of dominant or submissive behaviors as models for antimanic or antidepressant drug testing: technical considerations. J Neurosci Methods 165(2):175–182. https://doi.org/10.1016/j.jneumeth.2007.05.035

    Article  CAS  PubMed  Google Scholar 

  42. Zhou T, Sandi C, Hu H (2018) Advances in understanding neural mechanisms of social dominance. Curr Opin Neurobiol 49:99–107. https://doi.org/10.1016/j.conb.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  43. Malatyńska E, Kostowski W (1988) Desipramine antagonizes clonidine-induced suppression of dominance in rats: possible involvement of amygdaloid nuclei. Pol J Pharmacol Pharm 40(4):357–364

    PubMed  Google Scholar 

  44. Malatynska E, Rapp R, Harrawood D, Tunnicliff G (2005) Submissive behavior in mice as a test for antidepressant drug activity. Pharm Biochem Behav 82(2):306–313. https://doi.org/10.1016/j.pbb.2005.08.020

    Article  CAS  Google Scholar 

  45. Feder Y, Nesher E, Ogran A, Kreinin A, Malatynska E, Yadid G, Pinhasov A (2010) Selective breeding for dominant and submissive behavior in Sabra mice. J Affect Disord 126(1–2):214–222. https://doi.org/10.1016/j.jad.2010.03.018

    Article  PubMed  Google Scholar 

  46. Lathe R (2004) The individuality of mice. Genes Brain Behav 3(6):317–327. https://doi.org/10.1111/j.1601-183X.2004.00083.x

    Article  CAS  PubMed  Google Scholar 

  47. Chia R, Achilli F, Festing MF, Fisher EM (2005) The origins and uses of mouse outbred stocks. Nat Genet 37(11):1181–1186. https://doi.org/10.1038/ng1665

    Article  CAS  PubMed  Google Scholar 

  48. Avraham Y, Ben-Shushan D, Breuer A, Zolotarev O, Okon A, Fink N, Katz V, Berry EM (2004) Very low doses of delta 8-THC increase food consumption and alter neurotransmitter levels following weight loss. Pharmacol Biochem Behav 77(4):675–684. https://doi.org/10.1016/j.pbb.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  49. Avraham Y, Menachem AB, Okun A, Zlotarav O, Abel N, Mechoulam R, Berry EM (2005) Effects of the endocannabinoid noladin ether on body weight, food consumption, locomotor activity, and cognitive index in mice. Brain Res Bull 65(2):117–123. https://doi.org/10.1016/j.brainresbull.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  50. Avraham Y, Davidi N, Lassri V, Vorobiev L, Kabesa M, Dayan M, Chernoguz D, Berry E, Leker RR (2011) Leptin induces neuroprotection neurogenesis and angiogenesis after stroke. Curr Neurovasc Res 8(4):313–322. https://doi.org/10.2174/156720211798120954

    Article  CAS  PubMed  Google Scholar 

  51. Avraham Y, Dayan M, Lassri V, Vorobiev L, Davidi N, Chernoguz D, Berry E, Leker RR (2013) Delayed leptin administration after stroke induces neurogenesis and angiogenesis. J Neurosci Res 91(2):187–195. https://doi.org/10.1002/jnr.23147

    Article  CAS  PubMed  Google Scholar 

  52. Gobshtis N, Ben-Shabat S, Fride E (2007) Antidepressant-induced undesirable weight gain: prevention with rimonabant without interference with behavioral effectiveness. Eur J Pharmacol 554(2-3):155–163. https://doi.org/10.1016/j.ejphar.2006.10.028

    Article  CAS  PubMed  Google Scholar 

  53. Thau-Zuchman O, Shohami E, Alexandrovich AG, Trembovler V, Leker RR (2012) The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J Neurotrauma 29(2):375–384. https://doi.org/10.1089/neu.2010.1673

    Article  PubMed  Google Scholar 

  54. Nesher E, Peskov V, Rylova A, Raz O, Pinhasov A (2012) Comparative analysis of the behavioral and biomolecular parameters of four mouse strains. J Mol Neurosci 46(2):276–284. https://doi.org/10.1007/s12031-011-9544-0

    Article  CAS  PubMed  Google Scholar 

  55. Commons KG, Cholanians AB, Babb JA, Ehlinger DG (2017) The rodent forced swim test measures stress-coping strategy, Not Depression-like Behavior. ACS Chem Neurosci 8(5):955–960. https://doi.org/10.1021/acschemneuro.7b00042

    Article  CAS  PubMed  Google Scholar 

  56. Masis-Calvo M, Schmidtner AK, de Moura Oliveira VE, Grossmann CP, de Jong TR, Neumann ID (2018) Animal models of social stress: the dark side of social interactions. Stress (Amsterdam, Netherlands) 21(5):417–432. https://doi.org/10.1080/10253890.2018.1462327

    Article  CAS  Google Scholar 

  57. Burokas A, Gutiérrez-Cuesta J, Martín-García E, Maldonado R (2012) Operant model of frustrated expected reward in mice. Addict Biol 17(4):770–782. https://doi.org/10.1111/j.1369-1600.2011.00423.x

    Article  CAS  PubMed  Google Scholar 

  58. Nesher E, Gross M, Lisson S, Tikhonov T, Yadid G, Pinhasov A (2013) Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals. Behav Brain Res 236(1):225–235. https://doi.org/10.1016/j.bbr.2012.08.040

    Article  CAS  PubMed  Google Scholar 

  59. Vargas-Salfate S, Paez D, Liu JH, Pratto F, Gil de Zúñiga H (2018) A comparison of social dominance theory and system justification: the role of social status in 19 nations. Pers Soc Psychol Bull 44(7):1060–1076. https://doi.org/10.1177/0146167218757455

    Article  PubMed  Google Scholar 

  60. Kleppestø TH, Czajkowski NO, Vassend O, Røysamb E, Eftedal NH, Sheehy-Skeffington J, Kunst JR, Thomsen L (2019) Correlations between social dominance orientation and political attitudes reflect common genetic underpinnings. Proc Natl Acad Sci U S A 116(36):17741–17746. https://doi.org/10.1073/pnas.1818711116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kunkel T, Wang H (2018) Socially dominant mice in C57BL6 background show increased social motivation. Behav Brain Res 336:173–176. https://doi.org/10.1016/j.bbr.2017.08.038

    Article  PubMed  Google Scholar 

  62. Rodriguez-Santiago M, Nührenberg P, Derry J, Deussen O, Francisco FA, Garrison LK, Garza SF, Hofmann HA, Jordan A (2020) Behavioral traits that define social dominance are the same that reduce social influence in a consensus task. Proc Natl Acad Sci U S A 117(31):18566–18573. https://doi.org/10.1073/pnas.2000158117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wooddell LJ, Kaburu SSK, Dettmer AM (2020) Dominance rank predicts social network position across developmental stages in rhesus monkeys. Am J Primatol 82(11):e23024. https://doi.org/10.1002/ajp.23024

    Article  PubMed  Google Scholar 

  64. Koek W, Sandoval TL, Daws LC (2018) Effects of the antidepressants desipramine and fluvoxamine on latency to immobility and duration of immobility in the forced swim test in adult male C57BL/6J mice. Behav Pharmacol 29(5):453–456. https://doi.org/10.1097/fbp.0000000000000371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fitzgerald PJ, Yen JY, Watson BO (2019) Stress-sensitive antidepressant-like effects of ketamine in the mouse forced swim test. PloS one 14(4):e0215554. https://doi.org/10.1371/journal.pone.0215554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kraeuter AK, Guest PC, Sarnyai Z (2019) The forced swim test for depression-like behavior in rodents. Methods Mol Biol (Clifton, NJ) 1916:75–80. https://doi.org/10.1007/978-1-4939-8994-2_5

    Article  CAS  Google Scholar 

  67. Larrieu T, Sandi C (2018) Stress-induced depression: is social rank a predictive risk factor? BioEssays 40(7):e1800012. https://doi.org/10.1002/bies.201800012

    Article  PubMed  Google Scholar 

  68. Ramon S (2018) The place of social recovery in mental health and related services. Int J Environ Res Public Health 15(6). https://doi.org/10.3390/ijerph15061052

  69. Murlanova K, Michaelevski I, Kreinin A, Terrillion C, Pletnikov M, Pinhasov A (2021) Link between temperament traits, brain neurochemistry and response to SSRI: insights from animal model of social behavior. J Affect Disord 282:1055–1066. https://doi.org/10.1016/j.jad.2020.11.005

    Article  CAS  PubMed  Google Scholar 

  70. Rein B, Ma K, Yan Z (2020) A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc 15(10):3464–3477. https://doi.org/10.1038/s41596-020-0382-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gross M, Pinhasov A (2016) Chronic mild stress in submissive mice: marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav Brain Res 298(Pt B):25–34. https://doi.org/10.1016/j.bbr.2015.10.049

    Article  PubMed  Google Scholar 

  72. Coulter L, Ibrahimi M, Patel R, Agius M (2017) Linking the psychosocial aetiology and neurobiology of unipolar depression. Psychiatr Danub 29(Suppl 3):441–446

    CAS  PubMed  Google Scholar 

  73. de Vries YA, Ten Have M, de Graaf R, van Dorsselaer S, de Ruiter NMP, de Jonge P (2019) The relationship between mental disorders and actual and desired subjective social status. Epidemiol Psychiatr Sci 29:e83. https://doi.org/10.1017/s2045796019000805

    Article  PubMed  PubMed Central  Google Scholar 

  74. Komori T, Makinodan M, Kishimoto T (2019) Social status and modern-type depression: a review. Brain Behav 9(12):e01464. https://doi.org/10.1002/brb3.1464

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hao Y, Farah MJ (2020) The affective neuroscience of socioeconomic status: implications for mental health. BJPsych Bull 44(5):202–207. https://doi.org/10.1192/bjb.2020.69

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kivimäki M, Batty GD, Pentti J, Shipley MJ, Sipilä PN, Nyberg ST, Suominen SB, Oksanen T, Stenholm S, Virtanen M, Marmot MG, Singh-Manoux A, Brunner EJ, Lindbohm JV, Ferrie JE, Vahtera J (2020) Association between socioeconomic status and the development of mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public Health 5(3):e140–e149. https://doi.org/10.1016/s2468-2667(19)30248-8

    Article  PubMed  Google Scholar 

  77. Schneiderman N, Ironson G, Siegel SD (2005) Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol 1:607–628. https://doi.org/10.1146/annurev.clinpsy.1.102803.144141

    Article  PubMed  PubMed Central  Google Scholar 

  78. Beery AK, Kaufer D (2015) Stress, social behavior, and resilience: insights from rodents. Neurobiol Stress 1:116–127. https://doi.org/10.1016/j.ynstr.2014.10.004

    Article  PubMed  Google Scholar 

  79. Villada C, Espin L, Hidalgo V, Rubagotti S, Sgoifo A, Salvador A (2017) The influence of coping strategies and behavior on the physiological response to social stress in women: The role of age and menstrual cycle phase. Physiol Behav 170:37–46. https://doi.org/10.1016/j.physbeh.2016.12.011

    Article  CAS  PubMed  Google Scholar 

  80. Langenhof MR, Komdeur J (2018) Why and how the early-life environment affects development of coping behaviours. Behav Ecol Sociobiol 72(3):34. https://doi.org/10.1007/s00265-018-2452-3

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kotas ME, Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160(5):816–827. https://doi.org/10.1016/j.cell.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tsigos C, Kyrou I, Kassi E, Chrousos GP (2000) Stress: endocrine physiology and pathophysiology. In: Feingold KR, Anawalt B, Boyce A et al (eds) Endotext. MDText.com, Inc, South Dartmouth

    Google Scholar 

  83. Bairachnaya M, Agranyoni O, Antoch M, Michaelevski I, Pinhasov A (2019) Innate sensitivity to stress facilitates inflammation, alters metabolism and shortens lifespan in a mouse model of social hierarchy. Aging 11(21):9901–9911. https://doi.org/10.18632/aging.102440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Straub RH, Cutolo M (2018) Psychoneuroimmunology-developments in stress research. Wiener medizinische Wochenschrift (1946) 168(3-4):76–84. https://doi.org/10.1007/s10354-017-0574-2

    Article  Google Scholar 

  85. Rohleder N (2019) Stress and inflammation - The need to address the gap in the transition between acute and chronic stress effects. Psychoneuroendocrinology 105:164–171. https://doi.org/10.1016/j.psyneuen.2019.02.021

    Article  PubMed  Google Scholar 

  86. Madigan S, Oatley H, Racine N, Fearon RMP, Schumacher L, Akbari E, Cooke JE, Tarabulsy GM (2018) A meta-analysis of maternal prenatal depression and anxiety on child socioemotional development. J Am Acad Child Adolesc Psychiatry 57(9):645–657.e648. https://doi.org/10.1016/j.jaac.2018.06.012

    Article  PubMed  Google Scholar 

  87. Hantsoo L, Kornfield S, Anguera MC, Epperson CN (2019) Inflammation: a proposed intermediary between maternal stress and offspring neuropsychiatric risk. Biol Psychiatry 85(2):97–106. https://doi.org/10.1016/j.biopsych.2018.08.018

    Article  PubMed  Google Scholar 

  88. Lautarescu A, Craig MC, Glover V (2020) Prenatal stress: effects on fetal and child brain development. Int Rev Neurobiol 150:17–40. https://doi.org/10.1016/bs.irn.2019.11.002

    Article  PubMed  Google Scholar 

  89. Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, Hoyer D, Roseboom T, Räikkönen K, King S, Schwab M (2020) Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neuroscie Biobehav Rev 117:26–64. https://doi.org/10.1016/j.neubiorev.2017.07.003

    Article  Google Scholar 

  90. Koss KJ, Gunnar MR (2018) Annual research review: early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. J Child Psychol Psychiatry Allied Discip 59(4):327–346. https://doi.org/10.1111/jcpp.12784

    Article  Google Scholar 

  91. Molenaar NM, Tiemeier H, van Rossum EFC, Hillegers MHJ, Bockting CLH, Hoogendijk WJG, van den Akker EL, Lambregtse-van den Berg MP, El Marroun H (2019) Prenatal maternal psychopathology and stress and offspring HPA axis function at 6 years. Psychoneuroendocrinology 99:120–127. https://doi.org/10.1016/j.psyneuen.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  92. Nazzari S, Fearon P, Rice F, Dottori N, Ciceri F, Molteni M, Frigerio A (2019) Beyond the HPA-axis: Exploring maternal prenatal influences on birth outcomes and stress reactivity. Psychoneuroendocrinology 101:253–262. https://doi.org/10.1016/j.psyneuen.2018.11.018

    Article  CAS  PubMed  Google Scholar 

  93. McLean MA, Simcock G, Elgbeili G, Laplante DP, Kildea S, Hurrion E, Lequertier B, Cobham VE, King S (2020) Disaster-related prenatal maternal stress, and childhood HPA-axis regulation and anxiety: the QF2011 Queensland Flood Study. Psychoneuroendocrinology 118:104716. https://doi.org/10.1016/j.psyneuen.2020.104716

    Article  CAS  PubMed  Google Scholar 

  94. Yong Ping E, Laplante DP, Elgbeili G, Jones SL, Brunet A, King S (2020) Disaster-related prenatal maternal stress predicts HPA reactivity and psychopathology in adolescent offspring: project ice storm. Psychoneuroendocrinology 117:104697. https://doi.org/10.1016/j.psyneuen.2020.104697

    Article  CAS  PubMed  Google Scholar 

  95. Jahnke JR, Terán E, Murgueitio F, Cabrera H, Thompson AL (2021) Maternal stress, placental 11β-hydroxysteroid dehydrogenase type 2, and infant HPA axis development in humans: psychosocial and physiological pathways. Placenta 104:179–187. https://doi.org/10.1016/j.placenta.2020.12.008

    Article  CAS  PubMed  Google Scholar 

  96. Gross M, Romi H, Miller A, Pinhasov A (2018) Social dominance predicts hippocampal glucocorticoid receptor recruitment and resilience to prenatal adversity. Sci Rep 8(1):9595. https://doi.org/10.1038/s41598-018-27988-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gross M, Romi H, Gilimovich Y, Drori E, Pinhasov A (2018) Placental glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 recruitment indicates impact of prenatal adversity upon postnatal development in mice. Stress (Amsterdam, Netherlands) 21(6):474–483. https://doi.org/10.1080/10253890.2018.1460660

    Article  CAS  Google Scholar 

  98. Mago R (2016) Adverse effects of psychotropic medications: a call to action. Psychiatr Clin North Am 39(3):361–373. https://doi.org/10.1016/j.psc.2016.04.005

    Article  PubMed  Google Scholar 

  99. Braslow JT, Marder SR (2019) History of psychopharmacology. Annu Rev Clin Psychol 15:25–50. https://doi.org/10.1146/annurev-clinpsy-050718-095514

    Article  PubMed  Google Scholar 

  100. Murphy E, McMahon FJ (2013) Pharmacogenetics of antidepressants, mood stabilizers, and antipsychotics in diverse human populations. Discov Med 16(87):113–122

    PubMed  PubMed Central  Google Scholar 

  101. Hoehe MR, Morris-Rosendahl DJ (2018) The role of genetics and genomics in clinical psychiatry. Dialogues Clin Neurosci 20(3):169–177. https://doi.org/10.31887/DCNS.2018.20.3/mhoehe

    Article  PubMed  PubMed Central  Google Scholar 

  102. Müller DJ, Rizhanovsky Z (2020) From the origins of pharmacogenetics to first applications in psychiatry. Pharmacopsychiatry 53(4):155–161. https://doi.org/10.1055/a-0979-2322

    Article  CAS  PubMed  Google Scholar 

  103. Correll CU, Detraux J, De Lepeleire J, De Hert M (2015) Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 14(2):119–136. https://doi.org/10.1002/wps.20204

    Article  PubMed  PubMed Central  Google Scholar 

  104. Gosselin T, Le Guisquet AM, Brizard B, Hommet C, Minier F, Belzung C (2017) Fluoxetine induces paradoxical effects in C57BL6/J mice: comparison with BALB/c mice. Behav Pharmacol 28(6):466–476. https://doi.org/10.1097/fbp.0000000000000321

    Article  CAS  PubMed  Google Scholar 

  105. Siafis S, Tzachanis D, Samara M, Papazisis G (2018) Antipsychotic drugs: from receptor-binding profiles to metabolic side effects. Curr Neuropharmacol 16(8):1210–1223. https://doi.org/10.2174/1570159x15666170630163616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fava GA (2020) May antidepressant drugs worsen the conditions they are supposed to treat? The clinical foundations of the oppositional model of tolerance. Ther Adv Psychopharmacol 10:2045125320970325. https://doi.org/10.1177/2045125320970325

    Article  PubMed  PubMed Central  Google Scholar 

  107. Williams AJ, Lai Z, Knight S, Kamali M, Assari S, McInnis MG (2018) Risk factors associated with antidepressant exposure and history of antidepressant-induced mania in bipolar disorder. J Clin Psychiatry 79(3). https://doi.org/10.4088/JCP.17m11765

  108. Melhuish Beaupre LM, Tiwari AK, Gonçalves VF, Lisoway AJ, Harripaul RS, Müller DJ, Zai CC, Kennedy JL (2020) Antidepressant-associated mania in bipolar disorder: a review and meta-analysis of potential clinical and genetic risk factors. J Clin Psychopharmacol 40(2):180–185. https://doi.org/10.1097/jcp.0000000000001186

    Article  PubMed  Google Scholar 

  109. Stawicka E, Wolańczyk T (2020) Mania induced by antidepressants – characteristics and specific phenomena in children and adolescents. Psychiatria Polska 54(3):525–536. https://doi.org/10.12740/pp/109386

    Article  PubMed  Google Scholar 

  110. Saïas T, Gallarda T (2008) Paradoxical aggressive reactions to benzodiazepine use: a review. L’Encephale 34(4):330–336. https://doi.org/10.1016/j.encep.2007.05.005

    Article  CAS  PubMed  Google Scholar 

  111. Jones KA, Nielsen S, Bruno R, Frei M, Lubman DI (2011) Benzodiazepines – their role in aggression and why GPs should prescribe with caution. Aust Fam Physician 40(11):862–865

    PubMed  Google Scholar 

  112. Yanovich C, Kirby ML, Michaelevski I, Yadid G, Pinhasov A (2018) Social rank-associated stress vulnerability predisposes individuals to cocaine attraction. Sci Rep 8(1):1759. https://doi.org/10.1038/s41598-018-19816-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kardash T, Rodin D, Kirby M, Davis N, Koman I, Gorelick J, Michaelevski I, Pinhasov A (2020) Link between personality and response to THC exposure. Behav Brain Res 379:112361. https://doi.org/10.1016/j.bbr.2019.112361

    Article  CAS  PubMed  Google Scholar 

  114. Hand TW, Vujkovic-Cvijin I, Ridaura VK, Belkaid Y (2016) Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol Metab 27(12):831–843. https://doi.org/10.1016/j.tem.2016.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Donovan SM (2017) Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health. Gut Microbes 8(2):75–81. https://doi.org/10.1080/19490976.2017.1299309

    Article  PubMed  PubMed Central  Google Scholar 

  116. Martin CR, Mayer EA (2017) Gut-brain axis and behavior. Nestle Nutrition Institute workshop series 88:45–53. https://doi.org/10.1159/000461732

  117. Vuong HE, Yano JM, Fung TC, Hsiao EY (2017) The microbiome and host behavior. Annu Rev Neurosci 40:21–49. https://doi.org/10.1146/annurev-neuro-072116-031347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Agranyoni O, Meninger-Mordechay S, Uzan A, Ziv O, Salmon-Divon M, Rodin D, Raz O, Koman I, Koren O, Pinhasov A, Navon-Venezia S (2021) Gut microbiota determines the social behavior of mice and induces metabolic and inflammatory changes in their adipose tissue. NPJ Biofilms Microbiomes 7(1):28. https://doi.org/10.1038/s41522-021-00193-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bharwani A, Mian MF, Foster JA, Surette MG, Bienenstock J, Forsythe P (2016) Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology 63:217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  120. Kelly JR, Borre Y, C OB, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118. https://doi.org/10.1016/j.jpsychires.2016.07.019

    Article  PubMed  Google Scholar 

  121. Yang C, Qu Y, Fujita Y, Ren Q, Ma M, Dong C, Hashimoto K (2017) Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model. Transl Psychiatry 7(12):1294. https://doi.org/10.1038/s41398-017-0031-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Winter G, Hart RA, Charlesworth RPG, Sharpley CF (2018) Gut microbiome and depression: what we know and what we need to know. Rev Neurosci 29(6):629–643. https://doi.org/10.1515/revneuro-2017-0072

    Article  PubMed  Google Scholar 

  123. Brust V, Schindler PM, Lewejohann L (2015) Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Front Zool 12(Suppl 1):S17. https://doi.org/10.1186/1742-9994-12-S1-S17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Pinhasov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinhasov, A. et al. (2023). Development of a Selectively-Bred Mouse Model of Dominance and Submissiveness: Technical Considerations. In: Harro, J. (eds) Psychiatric Vulnerability, Mood, and Anxiety Disorders. Neuromethods, vol 190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2748-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2748-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2747-1

  • Online ISBN: 978-1-0716-2748-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics