Skip to main content

Synchronization of HeLa Cells to Various Interphases Including G1, S, and G2 Phases

  • Protocol
  • First Online:
Cell-Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2579))

  • 2324 Accesses

Abstract

The typical cell cycle in eukaryotes is composed of four phases including the G1, S, G2, and M phases. G1, S, and G2 together are called interphase. Cell synchronization is a process that brings cultured cells at different stages of the cell cycle to the same phase, which allows the study of phase-specific cellular events. While interphase cells can be easily distinguished from mitotic cells by examining their chromosome morphology, it is much more difficult to separate and distinguish the interphases from each other. Here, we describe drug-derived protocols for synchronizing HeLa cells to various interphases of the cell cycle: G1 phase, S phase, and G2 phase. G1 phase synchronization is achieved through serum starvation, S phase synchronization is achieved through a double thymidine block, and G2 phase synchronization is achieved through the release of the double thymidine block followed by roscovitine treatment. Successful synchronization can be assessed using flow cytometry to examine the DNA content and Western blot to examine the expression of various cyclins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panagopoulos A, Altmeyer M (2021) The hammer and the dance of cell cycle control. Trends Biochem Sci 46(4):301–314

    Article  CAS  Google Scholar 

  2. Wang Z (2021) Regulation of cell cycle progression by growth factor-induced cell signaling. Cell 10(12):3327

    Article  CAS  Google Scholar 

  3. Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Methods Mol Biol (Clifton, NJ) 1170:29–40

    Article  Google Scholar 

  4. Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28(33):2925–2939

    Article  CAS  Google Scholar 

  5. Gao X, Leone GW, Wang H (2020) Cyclin D-CDK4/6 functions in cancer. Adv Cancer Res 148:147–169

    Article  CAS  Google Scholar 

  6. Ma HT, Poon RY (2011) Synchronization of HeLa cells. Methods Mol Biol (Clifton, NJ) 761:151–161

    Article  CAS  Google Scholar 

  7. Bjursell G, Reichard P (1973) Effects of thymidine on deoxyribonucleoside triphosphate pools and deoxyribonucleic acid synthesis in Chinese hamster ovary cells. J Biol Chem 248(11):3904–3909

    Article  CAS  Google Scholar 

  8. Schvartzman JB, Krimer DB, Van’t Hof J (1984) The effects of different thymidine concentrations on DNA replication in pea-root cells synchronized by a protracted 5-fluorodeoxyuridine treatment. Exp Cell Res 150(2):379–389

    Article  CAS  Google Scholar 

  9. Chen G, Deng X (2018) Cell synchronization by double thymidine block. Bio Protoc 8(17):e2994

    Article  CAS  Google Scholar 

  10. Maurer M, Komina O, Wesierska-Gadek J (2009) Roscovitine differentially affects asynchronously growing and synchronized human MCF-7 breast cancer cells. Ann N Y Acad Sci 1171:250–256

    Article  CAS  Google Scholar 

  11. Bostock CJ, Prescott DM, Kirkpatrick JB (1971) An evaluation of the double thymidine block for synchronizing mammalian cells at the G1-S border. Exp Cell Res 68(1):163–168

    Article  CAS  Google Scholar 

  12. Whittaker SR, Walton MI, Garrett MD, Workman P (2004) The cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res 64(1):262–272

    Article  CAS  Google Scholar 

  13. Darzynkiewicz Z, Gong J, Juan G, Ardelt B, Traganos F (1996) Cytometry of cyclin proteins. Cytometry 25(1):1–13

    Article  CAS  Google Scholar 

  14. Pozarowski P, Darzynkiewicz Z (2004) Analysis of cell cycle by flow cytometry. Methods Mol Biol (Clifton, NJ) 281:301–311

    CAS  Google Scholar 

  15. Dulić V, Lees E, Reed SI (1992) Association of human cyclin E with a periodic G1-S phase protein kinase. Science (New York, NY) 257(5078):1958–1961

    Article  Google Scholar 

  16. Kraft C, Herzog F, Gieffers C, Mechtler K, Hagting A, Pines J, Peters JM (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22(24):6598–6609

    Article  CAS  Google Scholar 

  17. Pines J, Hunter T (1990) Human cyclin a is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature 346(6286):760–763

    Article  CAS  Google Scholar 

  18. Keyomarsi K, Sandoval L, Band V, Pardee AB (1991) Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res 51(13):3602–3609

    CAS  PubMed  Google Scholar 

  19. Park SY, Im JS, Park SR, Kim SE, Wang HJ, Lee JK (2012) Mimosine arrests the cell cycle prior to the onset of DNA replication by preventing the binding of human Ctf4/And-1 to chromatin via Hif-1α activation in HeLa cells. Cell Cycle (Georgetown, Tex) 11(4):761–766

    Article  CAS  Google Scholar 

  20. Kim JH, Gelbard AS, Djordjevic B, Kim SH, Perez AG (1968) Action of daunomycin on the nucleic acid metabolism and viability of HeLa cells. Cancer Res 28(12):2437–2442

    CAS  PubMed  Google Scholar 

  21. Pedrali-Noy G, Spadari S, Miller-Faurès A, Miller AO, Kruppa J, Koch G (1980) Synchronization of HeLa cell cultures by inhibition of DNA polymerase alpha with aphidicolin. Nucleic Acids Res 8(2):377–387

    Article  CAS  Google Scholar 

  22. Pfeiffer SE, Tolmach LJ (1967) Inhibition of DNA synthesis in HeLa cells by hydroxyurea. Cancer Res 27(1):124–129

    CAS  PubMed  Google Scholar 

  23. Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H, Heimbrook DC, Chen L (2006) Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A 103(28):10660–10665

    Article  CAS  Google Scholar 

  24. Dulla K, Daub H, Hornberger R, Nigg EA, Korner R (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression. Mol Cell Proteomics 9(6):1167–1181

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wee, P., Wang, R.C., Wang, Z. (2022). Synchronization of HeLa Cells to Various Interphases Including G1, S, and G2 Phases. In: Wang, Z. (eds) Cell-Cycle Synchronization. Methods in Molecular Biology, vol 2579. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2736-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2736-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2735-8

  • Online ISBN: 978-1-0716-2736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics