Skip to main content

Cell Cycle-Related Clinical Applications

  • Protocol
  • First Online:
Cell-Cycle Synchronization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2579))

Abstract

The cell cycle is a highly regulated and orchestrated mechanism of life that ensures successive division of a cell and precise replication of cellular contents. Cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors are three of the most critical cell cycle regulatory proteins that enable the smooth progression of cells through the different phases of cell cycle before and after division. The alteration of cell cycle-related proteins causes aberration in the normal cell cycle process, which is one of the pivotal causes of cancer and other diseases. Targeting cell cycle components has proven to be a valuable therapeutic strategy and leads to the development of novel anticancer therapeutic. The purpose of this book chapter is to summarize the literature and discuss the clinical significance of cell cycle-related proteins in cancers and other diseases, with a focus on identifying potential targets as therapeutic interventions for cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suski JM, Braun M, Strmiska V, Sicinski P (2021) Targeting cell-cycle machinery in cancer. Cancer Cell 39:759–778. https://doi.org/10.1016/j.ccell.2021.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hall EJ, Giaccia A (2019) Radiobiology for the radiologist, 8th edn. Chapter 4, pp 120–141

    Google Scholar 

  3. Khan MGM, Wang Y (2022) Advances in the current understanding of how low-dose radiation affects the cell cycle. Cell 11:356. https://doi.org/10.3390/cells11030356

    Article  CAS  Google Scholar 

  4. Matthews HK, Bertoli C, de Bruin RAM (2022) Cell cycle control in cancer. Nat Rev Mol Cell Biol 23:74–88. https://doi.org/10.1038/s41580-021-00404-3

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z (2021) Regulation of cell cycle progression by growth factor-induced cell signaling. Cell 10:doi:10.3390/cells10123327

    Google Scholar 

  6. Druker J, Wilson JW, Child F, Shakir D, Fasanya T, Rocha S (2021) Role of hypoxia in the control of the cell cycle. Int J Mol Sci 22:doi:10.3390/ijms22094874

    Article  Google Scholar 

  7. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17:93–115. https://doi.org/10.1038/nrc.2016.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L (2020) Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 20:669–679. https://doi.org/10.1038/s41577-020-0300-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng K, He Z, Kitazato K, Wang Y (2019) Selective autophagy regulates cell cycle in cancer therapy. Theranostics 9:104–125. https://doi.org/10.7150/thno.30308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pang W, Li Y, Guo W, Shen H (2020) Cyclin E: a potential treatment target to reverse cancer Chemoresistance by regulating the cell cycle. Am J Transl Res 12:5170–5187

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang J, Yang T, Xu G, Liu H, Ren C, Xie W, Wang M (2016) Cyclin-dependent kinase 2 promotes tumor proliferation and induces radio resistance in glioblastoma. Transl Oncol 9:548–556. https://doi.org/10.1016/j.tranon.2016.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hassan KA, Ang KK, El-Naggar AK, Story MD, Lee JI, Liu D, Hong WK, Mao L (2002) Cyclin B1 overexpression and resistance to radiotherapy in head and neck squamous cell carcinoma. Cancer Res 62:6414–6417

    CAS  PubMed  Google Scholar 

  13. Palaiologos P, Chrysikos D, Theocharis S, Kouraklis G (2019) The prognostic value of G1 cyclins, P21 and Rb protein in patients with colon cancer. Anticancer Res 39:6291–6297. https://doi.org/10.21873/anticanres.13839

    Article  CAS  PubMed  Google Scholar 

  14. Liping X, Jia L, Qi C, Liang Y, Dongen L, Jianshuai J (2020) Cell cycle genes are potential diagnostic and prognostic biomarkers in hepatocellular carcinoma. Biomed Res Int 2020:6206157. https://doi.org/10.1155/2020/6206157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lazar IM, Hoeschele I, de Morais J, Tenga MJ (2017) Cell cycle model system for advancing cancer biomarker research. Sci Rep 7:17989. https://doi.org/10.1038/s41598-017-17845-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the CBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E et al (2012) The CBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  18. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, Varambally S (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19. https://doi.org/10.1016/j.neo.2017.05.002

  19. Liu L, Michowski W, Kolodziejczyk A, Sicinski P (2019) The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat Cell Biol 21:1060–1067. https://doi.org/10.1038/s41556-019-0384-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593. https://doi.org/10.3389/fcell.2021.645593

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen S-D, Yang J-L, Lin Y-C, Chao A-C, Yang D-I (2020) Emerging roles of inhibitor of Differentiation-1 in Alzheimer’s disease: cell cycle reentry and beyond. Cells 9. https://doi.org/10.3390/cells9071746

  22. Koyano T, Namba M, Kobayashi T, Nakakuni K, Nakano D, Fukushima M, Nishiyama A, Matsuyama M (2019) The P21 dependent G2 arrest of the cell cycle in epithelial tubular cells links to the early stage of renal fibrosis. Sci Rep 9:12059. https://doi.org/10.1038/s41598-019-48557-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Price PM, Safirstein RL, Megyesi J (2009) The cell cycle and acute kidney injury. Kidney Int 76:604–613. https://doi.org/10.1038/ki.2009.224

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jia H-M, Huang L-F, Zheng Y, Li W-X (2017) Prognostic value of cell cycle arrest biomarkers in patients at high risk for acute kidney injury: a systematic review and meta-analysis. Nephrology (Carlton, Vic.) 22:831–837. https://doi.org/10.1111/nep.13095

    Article  CAS  Google Scholar 

  25. Ortega LM, Heung M (2018) The use of cell cycle arrest biomarkers in the early detection of acute kidney injury. Is this the new renal troponin? Nefrologia 38:361–367. https://doi.org/10.1016/j.nefro.2017.11.013

    Article  PubMed  Google Scholar 

  26. Hoose SA, Duran C, Malik I, Eslamfam S, Shasserre SC, Downing SS, Hoover EM, Dowd KE, Smith R, Polymenis M (2012) Systematic analysis of cell cycle effects of common drugs leads to the discovery of a suppressive interaction between gemfibrozil and fluoxetine. PLoS One 7:e36503. https://doi.org/10.1371/journal.pone.0036503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lo Y-C, Senese S, France B, Gholkar AA, Damoiseaux R, Torres JZ (2017) Computational cell cycle profiling of cancer cells for prioritizing FDA-approved drugs with repurposing potential. Sci Rep 7:11261. https://doi.org/10.1038/s41598-017-11508-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khan, M.G.M., Wang, Y. (2022). Cell Cycle-Related Clinical Applications. In: Wang, Z. (eds) Cell-Cycle Synchronization. Methods in Molecular Biology, vol 2579. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2736-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2736-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2735-8

  • Online ISBN: 978-1-0716-2736-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics