Skip to main content

Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase

  • Protocol
  • First Online:
Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2577))

Abstract

Epigenome editing is a powerful approach for the establishment of a chromatin environment with desired properties at a selected genomic locus, which is used to influence the transcription of target genes and to study properties and functions of gene regulatory elements. Targeted DNA methylation is one of the most often used types of epigenome editing, which typically aims for gene silencing by methylation of gene promoters. Here, we describe the design principles of EpiEditors for targeted DNA methylation and provide step-by-step guidelines for the realization of this approach. We focus on the dCas9 protein as the state-of-the-art DNA targeting module fused to 10×SunTag as the most frequently used system for editing enhancement. Further, we discuss different flavors of DNA methyltransferase modules used for this purpose including the most specific variants developed recently. Finally, we explain the principles of gRNA selection, outline the setup of the cell culture experiments, and briefly introduce the available options for the downstream DNA methylation data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parmar JJ, Woringer M, Zimmer C (2019) How the genome folds: the biophysics of four-dimensional chromatin organization. Annu Rev Biophys 48:231–253. https://doi.org/10.1146/annurev-biophys-052118-115638

    Article  CAS  PubMed  Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  3. Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3:274–293. https://doi.org/10.1002/1439-7633(20020402)3:4<274::aid-cbic274>3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  4. Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133. https://doi.org/10.1101/cshperspect.a019133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39:310–318. https://doi.org/10.1016/j.tibs.2014.05.002

    Article  CAS  PubMed  Google Scholar 

  6. De Groote ML, Verschure PJ, Rots MG (2012) Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res 40:10596–10613. https://doi.org/10.1093/nar/gks863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kungulovski G, Jeltsch A (2016) Epigenome editing: state of the art, concepts, and perspectives. Trends Genet 32:101–113. https://doi.org/10.1016/j.tig.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  8. Carvin CD, Dhasarathy A, Friesenhahn LB, Jessen WJ, Kladde MP (2003) Targeted cytosine methylation for in vivo detection of protein-DNA interactions. Proc Natl Acad Sci U S A 100:7743–7748. https://doi.org/10.1073/pnas.1332672100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li F, Papworth M, Minczuk M, Rohde C, Zhang Y, Ragozin S, Jeltsch A (2007) Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes. Nucleic Acids Res 35:100–112. https://doi.org/10.1093/nar/gkl1035

    Article  CAS  PubMed  Google Scholar 

  10. Xu G-L, Bestor TH (1997) Cytosine methylation targetted to pre-determined sequences. Nat Genet 17:376–378. https://doi.org/10.1038/ng1297-376

    Article  CAS  PubMed  Google Scholar 

  11. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys 2 His 2 zinc finger proteins. Annu Rev Biophys Biomol Struct 29:183–212. https://doi.org/10.1146/annurev.biophys.29.1.183

    Article  CAS  PubMed  Google Scholar 

  12. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846. https://doi.org/10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  13. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim J-S (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31:251–258. https://doi.org/10.1038/nbt.2517

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci 94:5525–5530. https://doi.org/10.1073/pnas.94.11.5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, Reik W, Jeltsch A, Jurkowski TP (2017) Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res 45:1703–1713. https://doi.org/10.1093/nar/gkw1112

    Article  CAS  PubMed  Google Scholar 

  19. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588. https://doi.org/10.1038/nature14136

    Article  CAS  PubMed  Google Scholar 

  20. Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12:664–670. https://doi.org/10.1038/nmeth.3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma H, Tu L-C, Naseri A, Chung Y-C, Grunwald D, Zhang S, Pederson T (2018) CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15:928–931. https://doi.org/10.1038/s41592-018-0174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646. https://doi.org/10.1016/j.cell.2014.09.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lebar T, Lainšček D, Merljak E, Aupič J, Jerala R (2020) A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells. Nat Chem Biol 16:513–519. https://doi.org/10.1038/s41589-019-0443-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jurkowska RZ, Jurkowski TP, Jeltsch A (2011) Structure and function of mammalian DNA methyltransferases. Chembiochem 12:206–222. https://doi.org/10.1002/cbic.201000195

    Article  CAS  PubMed  Google Scholar 

  25. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257. https://doi.org/10.1016/S0092-8674(00)81656-6

    Article  CAS  PubMed  Google Scholar 

  26. Chédin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99:16916–16921. https://doi.org/10.1073/pnas.262443999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gowher H, Liebert K, Hermann A, Xu G, Jeltsch A (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosine-C5)-methyltransferases by Dnmt3L. J Biol Chem 280:13341–13348. https://doi.org/10.1074/jbc.M413412200

    Article  CAS  PubMed  Google Scholar 

  28. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251. https://doi.org/10.1038/nature06146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, Rots MG, Ragozin S, Jurkowski TP, Jeltsch A (2013) Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a–Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol 425:479–491. https://doi.org/10.1016/j.jmb.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  30. Hofacker D, Broche J, Laistner L, Adam S, Bashtrykov P, Jeltsch A (2020) Engineering of effector domains for targeted DNA methylation with reduced off-target effects. Int J Mol Sci 21:502. https://doi.org/10.3390/ijms21020502

    Article  CAS  PubMed Central  Google Scholar 

  31. Bashtrykov P, Jeltsch A (2018) DNA methylation analysis by bisulfite conversion coupled to double multiplexed amplicon-based next-generation sequencing (NGS). Methods Mol Biol 1767:367–382. https://doi.org/10.1007/978-1-4939-7774-1_20

    Article  CAS  PubMed  Google Scholar 

  32. Jeltsch A, Broche J, Lungu C, Bashtrykov P (2020) Biotechnological applications of MBD domain proteins for DNA methylation analysis. J Mol Biol 432(6):18161823. https://doi.org/10.1016/j.jmb.2019.08.020

    Article  CAS  Google Scholar 

  33. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schübeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862. https://doi.org/10.1038/ng1598

    Article  CAS  PubMed  Google Scholar 

  34. Engler C, Kandzia R, Marillonnet S, El-Shemy HA (2008) A one pot one step precision cloning method with high throughput capability. PLoS ONE 3(11):e3647. https://doi.org/10.1371/journal.pone.0003647

Download references

Acknowledgments

Work in the authors’ laboratory has been supported by the BW Foundation (AllEpi, ID09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Bashtrykov or Albert Jeltsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bashtrykov, P., Rajaram, N., Jeltsch, A. (2023). Efficient Targeted DNA Methylation with dCas9-Coupled DNMT3A-DNMT3L Methyltransferase. In: Hatada, I., Horii, T. (eds) Epigenomics. Methods in Molecular Biology, vol 2577. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2724-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2724-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2723-5

  • Online ISBN: 978-1-0716-2724-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics