Skip to main content

Generation and Isolation of Retinal Ganglion Cells and Photoreceptors from Human iPSC-Derived Retinal Organoids by Magnetic-Activated Cell Sorting

  • Protocol
  • First Online:
Brain Organoid Research

Part of the book series: Neuromethods ((NM,volume 189))

  • 837 Accesses

Abstract

Inherited visual disorders, major cause of visual impairment, can be subdivided into inherited retinal dystrophies (iRD), due to the progressive loss of photoreceptors and retinal pigment epithelium, or inherited optic neuropathies (iON), due to the loss of retinal ganglion cells whose axons form the optic nerve. IRDs and IONs represent two genetically and clinically heterogeneous groups for which cell replacement is one of the most encouraging therapeutic strategies.

For stem cell-based therapy, using human induced pluripotent stem cells (iPSCs) is crucial to obtain a relatively homogenous cell population to be transplanted. We will present effective strategies based on magnetic-activated cell sorting to select transplantable retinal ganglion cells or photoreceptors by targeting a cell surface antigen specifically expressed in each of the two retinal cell types from human iPSC-derived retinal organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that others separators may be more adapted to specific experiments, notably according to the number of organoids and cell number during isolation process

References

  1. Stenkamp DL (2015) Development of the vertebrate eye and retina. In: Teplow DB (ed) Progress in molecular biology and translational science. Elsevier, Amsterdam, pp 397–414

    Google Scholar 

  2. Miesfeld JB, Brown NL (2019) Eye organogenesis: a hierarchical view of ocular development. In: Schatten G (ed) Current topics in developmental biology. Elsevier, Amsterdam, pp 351–393

    Google Scholar 

  3. Casey MA, Lusk S, Kwan KM (2021) Build me up optic cup: intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev Biol 476:128–136

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boije H, MacDonald RB, Harris WA (2014) Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages. Curr Opin Neurobiol 27:68–74

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Jin K (2017) Transitional progenitors during vertebrate retinogenesis. Mol Neurobiol 54:3565–3576

    CAS  PubMed  Google Scholar 

  6. Lu Y, Shiau F, Yi W et al (2020) Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Dev Cell 53:473–491.e9

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sridhar A, Hoshino A, Finkbeiner CR et al (2020) Single-cell transcriptomic comparison of human fetal retina, hPSC-derived retinal organoids, and long-term retinal cultures. Cell Rep 30:1644–1659.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mao X, An Q, Xi H et al (2019) Single-cell RNA sequencing of hESC-derived 3D retinal organoids reveals novel genes regulating RPC commitment in early human retinogenesis. Stem Cell Rep 13:747–760

    CAS  Google Scholar 

  9. Kruczek K, Swaroop A (2020) Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells 38:1206–1215

    PubMed  Google Scholar 

  10. O’Hara-Wright M, Gonzalez-Cordero A (2020) Retinal organoids: a window into human retinal development. Development 147:dev189746

    PubMed  PubMed Central  Google Scholar 

  11. Llonch S, Carido M, Ader M (2018) Organoid technology for retinal repair. Dev Biol 433:132–143

    CAS  PubMed  Google Scholar 

  12. Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci 103:12769–12774

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakano T, Ando S, Takata N et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    CAS  PubMed  Google Scholar 

  14. Meyer JS, Howden SE, Wallace KA et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218

    CAS  PubMed  Google Scholar 

  15. Reichman S, Terray A, Slembrouck A et al (2014) From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci 111:8518–8523

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong X, Gutierrez C, Xue T et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047

    CAS  PubMed  Google Scholar 

  17. Reichman S, Slembrouck A, Gagliardi G et al (2017) Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. Stem Cells 35:1176–1188

    CAS  PubMed  Google Scholar 

  18. Capowski EE, Samimi K, Mayerl SJ et al (2019) Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146:dev171686

    PubMed  PubMed Central  Google Scholar 

  19. Wahlin KJ, Maruotti JA, Sripathi SR et al (2017) Photoreceptor outer segment-like structures in long-term 3D retinas from human pluripotent stem cells. Sci Rep 7:766

    PubMed  PubMed Central  Google Scholar 

  20. da Silva S, Cepko CL (2017) Fgf8 expression and degradation of retinoic acid are required for patterning a high-acuity area in the retina. Dev Cell 42:68–81.e6

    PubMed  PubMed Central  Google Scholar 

  21. Stevens CB, Cameron DA, Stenkamp DL (2011) Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC Dev Biol 11:51

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brooks MJ, Chen HY, Kelley RA et al (2019) Improved retinal organoid differentiation by modulating signaling pathways revealed by comparative transcriptome analyses with development in vivo. Stem Cell Rep 13:891–905

    CAS  Google Scholar 

  23. Li L, Zhao H, Xie H et al (2021) Electrophysiological characterization of photoreceptor-like cells in human inducible pluripotent stem cell-derived retinal organoids during in vitro maturation. Stem Cells 39:959–974

    CAS  PubMed  Google Scholar 

  24. Fligor CM, Lavekar SS, Harkin J et al (2021) Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Rep 16:1–14

    Google Scholar 

  25. Gabriel E, Albanna W, Pasquini G et al (2021) Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 28:1–18

    Google Scholar 

  26. VanderWall KB, Huang KC, Pan Y et al (2020) Retinal ganglion cells with a glaucoma OPTN(E50K) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids. Stem Cell Rep 15:52–66

    CAS  Google Scholar 

  27. Lane A, Jovanovic K, Shortall C et al (2020) Modeling and rescue of RP2 retinitis pigmentosa using iPSC-derived retinal organoids. Stem Cell Rep 15:67–79

    CAS  Google Scholar 

  28. Deng W-L, Gao M-L, Lei X-L et al (2018) Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients. Stem Cell Rep 10:1267–1281

    CAS  Google Scholar 

  29. Huang K-C, Wang M-L, Chen S-J et al (2019) Morphological and molecular defects in human three-dimensional retinal organoid model of X-linked juvenile retinoschisis. Stem Cell Rep 13:906–923

    CAS  Google Scholar 

  30. Artero Castro A, Rodríguez Jimenez FJ, Jendelova P et al (2019) Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids: concise review. Stem Cells 37:1496–1504

    PubMed  Google Scholar 

  31. Parfitt DA, Lane A, Ramsden CM et al (2016) Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 18:769–781

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shirai H, Mandai M, Matsushita K et al (2016) Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A 113:E81–E90

    CAS  PubMed  Google Scholar 

  33. Mandai M, Fujii M, Hashiguchi T et al (2017) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Rep 8:69–83

    Google Scholar 

  34. Gagliardi G, Ben M’BK, Chaffiol A et al (2018) Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids. Stem Cell Rep 11:665–680

    CAS  Google Scholar 

  35. Rabesandratana O, Chaffiol A, Mialot A et al (2020) Generation of a transplantable population of human iPSC-derived retinal ganglion cells. Front Cell Dev Biol 8:585675

    PubMed  PubMed Central  Google Scholar 

  36. Ribeiro J, Procyk CA, West EL et al (2021) Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 35:109022

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Slembrouck-Brec A, Rodrigues A, Rabesandratana O et al (2019) Reprogramming of adult retinal Müller glial cells into human-induced pluripotent stem cells as an efficient source of retinal cells. Stem Cells Int 2019:1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Goureau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Orieux, G., Rabesandratana, O., Gagliardi, G., Goureau, O. (2023). Generation and Isolation of Retinal Ganglion Cells and Photoreceptors from Human iPSC-Derived Retinal Organoids by Magnetic-Activated Cell Sorting. In: Gopalakrishnan, J. (eds) Brain Organoid Research. Neuromethods, vol 189. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2720-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2720-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2719-8

  • Online ISBN: 978-1-0716-2720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics