Skip to main content

Profiling Cell Type-Specific Gene Regulatory Regions in Human Cortical Organoids

  • Protocol
  • First Online:
Brain Organoid Research

Part of the book series: Neuromethods ((NM,volume 189))

Abstract

Dissecting the molecular heterogeneity of the developing human brain is a long-standing ambition of neuroscientists. This has become both a practical and ethically sustainable reality with the advent of cerebral organoids, a 3D in vitro model system of neurogenesis which recapitulates much of the cell type diversity found in the fetal brain. Detailed analysis of cell type-specific biology mandated by the heterogeneity of developing human brain tissue is thus possible without the need of primary samples. Gene regulatory regions, through differential activity, are a key factor for acquisition and maintenance of cell identity and orchestrate intricate developmental processes by directing gene transcription. Here, we describe two experimental methods to isolate distinct cell populations from cortical organoids by means of fluorescence-activated cell sorting, leveraging distinct transcription factor profiles and cell morphological aspects. We assay open chromatin in both live and cross-linked samples using ATAC-seq and validate putative enhancer sequences using luciferase assays. These methods will allow future in-depth epigenomic characterization of human neurogenesis in the context of evolution, health, and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhaduri A, Andrews MG, Mancia Leon W, Jung D, Shin D, Allen D, Jung D, Schmunk G, Haeussler M, Salma J, Pollen AA, Nowakowski TJ, Kriegstein AR (2020) Cell stress in cortical organoids impairs molecular subtype specification. Nature 578(7793):142–148. https://doi.org/10.1038/s41586-020-1962-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mora-Bermudez F, Badsha F, Kanton S, Camp JG, Vernot B, Kohler K, Voigt B, Okita K, Maricic T, He Z, Lachmann R, Paabo S, Treutlein B, Huttner WB (2016) Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. Elife 5. https://doi.org/10.7554/eLife.18683

  3. Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meyerson OS, Mostajo-Radji MA, Di Lullo E, Alvarado B, Bedolli M, Dougherty ML, Fiddes IT, Kronenberg ZN, Shuga J, Leyrat AA, West JA, Bershteyn M, Lowe CB, Pavlovic BJ, Salama SR, Haussler D, Eichler EE, Kriegstein AR (2019) Establishing cerebral organoids as models of human-specific brain evolution. Cell 176 (4):743-756:e717. https://doi.org/10.1016/j.cell.2019.01.017

    Article  CAS  Google Scholar 

  4. Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Brauninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Paabo S, Huttner WB, Treutlein B (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA 112(51):15672–15677. https://doi.org/10.1073/pnas.1520760112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trevino AE, Sinnott-Armstrong N, Andersen J, Yoon SJ, Huber N, Pritchard JK, Chang HY, Greenleaf WJ, Pasca SP (2020) Chromatin accessibility dynamics in a model of human forebrain development. Science 367(6476). https://doi.org/10.1126/science.aay1645

  6. Amiri A, Coppola G, Scuderi S, Wu F, Roychowdhury T, Liu F, Pochareddy S, Shin Y, Safi A, Song L, Zhu Y, Sousa AMM, Psych EC, Gerstein M, Crawford GE, Sestan N, Abyzov A, Vaccarino FM (2018) Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 362(6420). https://doi.org/10.1126/science.aat6720

  7. Lewis EMA, Kaushik K, Sandoval LA, Antony I, Dietmann S, Kroll KL (2021) Epigenetic regulation during human cortical development: Seq-ing answers from the brain to the organoid. Neurochem Int 147:105039. https://doi.org/10.1016/j.neuint.2021.105039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA 110(50):20284–20289. https://doi.org/10.1073/pnas.1315710110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340. https://doi.org/10.1038/nprot.2014.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. https://doi.org/10.1038/nature12517

    Article  CAS  PubMed  Google Scholar 

  11. Qian X, Song H, Ming GL (2019) Brain organoids: advances, applications and challenges. Development 146(8). https://doi.org/10.1242/dev.166074

  12. Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL (2018) Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 13(3):565–580. https://doi.org/10.1038/nprot.2017.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, Su K, Li S, Lu L, Jacob F, Nguyen PTT, Huh S, Hoke A, Swinford-Jackson SE, Wen Z, Gu X, Pierce RC, Wu H, Briand LA, Chen HI, Wolf JA, Song H, Ming GL (2020) Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26(5):766–781. e769. https://doi.org/10.1016/j.stem.2020.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sloan SA, Andersen J, Pasca AM, Birey F, Pasca SP (2018) Generation and assembly of human brain region-specific three-dimensional cultures. Nat Protoc 13(9):2062–2085. https://doi.org/10.1038/s41596-018-0032-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Paridaen JT, Huttner WB (2014) Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 15(4):351–364. https://doi.org/10.1002/embr.201438447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klingler E, Francis F, Jabaudon D, Cappello S (2021) Mapping the molecular and cellular complexity of cortical malformations. Science 371(6527). https://doi.org/10.1126/science.aba4517

  17. Bizzotto S, Francis F (2015) Morphological and functional aspects of progenitors perturbed in cortical malformations. Front Cell Neurosci 9:30. https://doi.org/10.3389/fncel.2015.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502(7472):499–506. https://doi.org/10.1038/nature12753

    Article  CAS  PubMed  Google Scholar 

  19. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D, Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S, Cotsapas C, Sotoodehnia N, Glass I, Sunyaev SR, Kaul R, Stamatoyannopoulos JA (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195. https://doi.org/10.1126/science.1222794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci 107(50):21931–21936. https://doi.org/10.1073/pnas.1016071107

    Article  PubMed  PubMed Central  Google Scholar 

  21. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947. https://doi.org/10.1016/s0092-8674(88)90469-2

    Article  CAS  PubMed  Google Scholar 

  22. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311. https://doi.org/10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  23. van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES (2010) Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp 39. https://doi.org/10.3791/1869

  24. Song L, Crawford GE (2010) DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010(2):pdb prot5384. https://doi.org/10.1101/pdb.prot5384

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218. https://doi.org/10.1038/nmeth.2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, Kathiria A, Cho SW, Mumbach MR, Carter AC, Kasowski M, Orloff LA, Risca VI, Kundaje A, Khavari PA, Montine TJ, Greenleaf WJ, Chang HY (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14(10):959–962. https://doi.org/10.1038/nmeth.4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490. https://doi.org/10.1038/nature14590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cooper J, Ding Y, Song J, Zhao K (2017) Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing. Nat Protoc 12(11):2342–2354. https://doi.org/10.1038/nprot.2017.099

    Article  CAS  PubMed  Google Scholar 

  29. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502(7469):59–64. https://doi.org/10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  30. Molyneaux BJ, Goff LA, Brettler AC, Chen HH, Hrvatin S, Rinn JL, Arlotta P (2015) DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 85(2):275–288. https://doi.org/10.1016/j.neuron.2014.12.024

    Article  CAS  PubMed  Google Scholar 

  31. Chen X, Shen Y, Draper W, Buenrostro JD, Litzenburger U, Cho SW, Satpathy AT, Carter AC, Ghosh RP, East-Seletsky A, Doudna JA, Greenleaf WJ, Liphardt JT, Chang HY (2016) ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat Methods 13(12):1013–1020. https://doi.org/10.1038/nmeth.4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hrvatin S, Deng F, O’Donnell CW, Gifford DK, Melton DA (2014) MARIS: method for analyzing RNA following intracellular sorting. PLoS One 9(3):e89459. https://doi.org/10.1371/journal.pone.0089459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McNabb DS, Reed R, Marciniak RA (2005) Dual luciferase assay system for rapid assessment of gene expression in Saccharomyces cerevisiae. Eukaryot Cell 4(9):1539–1549. https://doi.org/10.1128/EC.4.9.1539-1549.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong FK, Peters J, Guhr E, Klemroth S, Prufer K, Kelso J, Naumann R, Nusslein I, Dahl A, Lachmann R, Paabo S, Huttner WB (2015) Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347(6229):1465–1470. https://doi.org/10.1126/science.aaa1975

    Article  CAS  PubMed  Google Scholar 

  35. Schmitz SU, Albert M, Malatesta M, Morey L, Johansen JV, Bak M, Tommerup N, Abarrategui I, Helin K (2011) Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J 30(22):4586–4600. https://doi.org/10.1038/emboj.2011.383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kalebic N, Gilardi C, Stepien B, Wilsch-Brauninger M, Long KR, Namba T, Florio M, Langen B, Lombardot B, Shevchenko A, Kilimann MW, Kawasaki H, Wimberger P, Huttner WB (2019) Neocortical expansion due to increased proliferation of basal progenitors is linked to changes in their morphology. Cell Stem Cell 24(4):535–550. e539. https://doi.org/10.1016/j.stem.2019.02.017

    Article  CAS  PubMed  Google Scholar 

  37. Dubreuil V, Marzesco AM, Corbeil D, Huttner WB, Wilsch-Brauninger M (2007) Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol 176(4):483–495. https://doi.org/10.1083/jcb.200608137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S (2020) The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38(3):276–278. https://doi.org/10.1038/s41587-020-0439-x

    Article  CAS  PubMed  Google Scholar 

  39. Patel H, Ewels PA, Peltzer A, Behrens D, Gabernet G, Jin M, Mashehu, Garcia M (2020) nf-core/atacseq: nf-core/atacseq v1.2.1 - Iron Centipede (1.2.1). Zenodo. https://doi.org/10.5281/zenodo.3965985

  40. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12(6):996–1006. https://doi.org/10.1101/gr.229102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyd JL, Skove SL, Rouanet JP, Pilaz LJ, Bepler T, Gordan R, Wray GA, Silver DL (2015) Human-chimpanzee differences in a FZD8 enhancer alter cell-cycle dynamics in the developing neocortex. Curr Biol 25(6):772–779. https://doi.org/10.1016/j.cub.2015.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA enhancer browser–a database of tissue-specific human enhancers. Nucleic Acids Res 35(Database issue):D88–D92. https://doi.org/10.1093/nar/gkl822

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Flow Cytometry Core Facility, Light Microscopy Facility, and Deep Sequencing Facility, all core facilities of the CRTD or CMCB Technology Platforms of the Technische Universität Dresden. CRTDi004-A hiPSCs (see Human Pluripotent Stem Cell Registry) were reprogrammed from foreskin fibroblasts of a healthy, consented donor at the Stem Cell Engineering Facility, a core facility of the CMCB Technology Platform at the Technische Universität Dresden. We acknowledge technical support from Li Ding for luciferase assay setup, advice from Florian Noack on organoid dissociation and Manching Ku on bead-based ATAC-seq library size selection. The pCAG-GFP plasmid was a kind gift from Wieland B. Huttner. This work was supported by funding from the German Research Foundation (Emmy Noether, AL 2231/1-1), Schram foundation, and Center for Regenerative Therapies TU Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Albert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schütze, T.M., Bölicke, N., Sameith, K., Albert, M. (2023). Profiling Cell Type-Specific Gene Regulatory Regions in Human Cortical Organoids. In: Gopalakrishnan, J. (eds) Brain Organoid Research. Neuromethods, vol 189. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2720-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2720-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2719-8

  • Online ISBN: 978-1-0716-2720-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics