Skip to main content

Rapid Identification of MHCII-Binding Peptides Through Microsphere-Assisted Peptide Screening (MAPS)

  • Protocol
  • First Online:
T-Cell Repertoire Characterization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2574))

Abstract

CD4+ T cells play a vital role in the immune response, and their function requires T cell receptor (TCR) recognition of peptide epitopes presented in complex with MHC class II (MHCII) molecules. Consequently, rapidly identifying peptides that bind MHCII is critical to understanding and treating infectious disease, cancer, autoimmunity, allergy, and transplant rejection. Computational methods provide a fast, ultrahigh-throughput approach to predict MHCII-binding peptides but lack the accuracy of experimental methods. In contrast, experimental methods offer accurate, quantitative results at the expense of speed. To address the gap between these two approaches, we developed a high-throughput, semiquantitative experimental screening strategy termed microsphere-assisted peptide screening (MAPS). Here, we use the Zika virus envelope protein as an example to demonstrate the rapid identification of MHCII-binding peptides from a single pathogenic protein using MAPS. This process involves several key steps including peptide library design, peptide exchange into MHCII, peptide-MHCII loading onto microspheres, flow cytometry screening, and data analysis to identify peptides that bind to one or more MHCII alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chng MHY, Lim MQ, Rouers A et al (2019) Large-scale HLA tetramer tracking of T cells during dengue infection reveals broad acute activation and differentiation into two memory cell fates. Immunity 51:1119–1135

    Article  PubMed  CAS  Google Scholar 

  2. Newell EW, Sigal N, Nair N et al (2013) Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol 31:623–629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Smith MR, Tolbert SV, Wen F (2018) Protein-scaffold directed nanoscale assembly of T cell ligands: artificial antigen presentation with defined Valency, density, and ratio. ACS Synth Biol 7:1629–1639

    Article  PubMed  CAS  Google Scholar 

  4. Sillito F, Holler A, Stauss HJ (2020) Engineering CD4+ T cells to enhance cancer immunity. Cell 9:234–236

    Article  Google Scholar 

  5. Hill BD, Zak A, Khera E et al (2018) Engineering virus-like particles for antigen and drug delivery. Curr Protein Pept Sci 19:112–127

    PubMed  CAS  Google Scholar 

  6. Sturniolo T, Bono E, Ding J et al (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 17:555–561

    Article  PubMed  CAS  Google Scholar 

  7. Wen F, Rubin-pitel SB, Zhao H (2009) Engineering of therapeutic proteins. In: Park SJ, Cochran JR (eds) Protein Eng. Des. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 153–177

    Google Scholar 

  8. Yee CM, Zak AJ, Hill BD et al (2018) The coming age of insect cells for manufacturing and development of protein therapeutics. Ind Eng Chem Res 57:10061–10070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ma XY, Hill BD, Hoang T et al (2021) Virus-inspired strategies for cancer therapy. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.06.021

  10. Tarke A, Sidney J, Kidd CK et al (2021) Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Reports Med 2:100204

    Article  CAS  Google Scholar 

  11. Sohail MS, Ahmed SF, Quadeer AA et al (2021) In silico T cell epitope identification for SARS-CoV-2: Progress and perspectives. Adv Drug Deliv Rev 171:29–47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Weiskopf D, Schmitz KS, Raadsen MP et al (2020) Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol 5:1–15

    Article  Google Scholar 

  13. Dan JM, Mateus J, Kato Y et al (2021) Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371:eabf4063

    Article  PubMed  CAS  Google Scholar 

  14. Unanue ER, Turk V, Neefjes J (2016) Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol 34:265–297

    Article  PubMed  CAS  Google Scholar 

  15. Robinson J, Barker DJ, Georgiou X et al (2020) IPD-IMGT/HLA Database. Nucleic Acids Res 48:D948–D955

    PubMed  CAS  Google Scholar 

  16. Peters B, Nielsen M, Sette A (2020) T cell epitope predictions. Annu Rev Immunol 38:123–145

    Article  PubMed  CAS  Google Scholar 

  17. Sidney J, Peters B, Sette A (2020) Epitope prediction and identification- adaptive T cell responses in humans. Semin Immunol 50:101418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lim HX, Lim J, Poh CL (2021) Identification and selection of immunodominant B and T cell epitopes for dengue multi-epitope-based vaccine. Med Microbiol Immunol 210:1–11

    Article  PubMed  CAS  Google Scholar 

  19. Wen F, Zhao H (2013) Construction and screening of an antigen-derived peptide library displayed on yeast cell surface for CD4+ T cell epitope identification. Methods Mol Biol 1061:245–264

    Article  PubMed  CAS  Google Scholar 

  20. Wen F, Esteban O, Zhao H (2008) Rapid identification of CD4+ T-cell epitopes using yeast displaying pathogen-derived peptide library. J Immunol Methods 336:37–44

    Article  PubMed  CAS  Google Scholar 

  21. Mösch A, Raffegerst S, Weis M et al (2019) Machine learning for cancer immunotherapies based on epitope recognition by T cell receptors. Front Genet 10:1–17

    Article  Google Scholar 

  22. Sidney J, Southwood S, Moore C et al (2013) Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture. Curr Protoc Immunol 100:18.3.1–18.3.36

    Article  Google Scholar 

  23. Sidney J, Southwood S, Oseroff C et al (1999) Measurement of MHC/peptide interactions by gel filtration. Curr Protoc Immunol 31:18.3.1–18.319

    Article  Google Scholar 

  24. Zarutskie JA, Busch R, Zavala-Ruiz Z et al (2001) The kinetic basis of peptide exchange catalysis by HLA-DM. Proc Natl Acad Sci U S A 98:12450–12455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Joshi RV, Zarutskie JA, Stern LJ (2000) A three-step kinetic mechanism for peptide binding to MHC class II proteins. Biochemistry 39:3751–3762

    Article  PubMed  CAS  Google Scholar 

  26. Yin L, Stern LJ (2014) Measurement of peptide binding to MHC class II molecules by fluorescence polarization. Curr Protoc Immunol 106:5.10.1–5.1012

    Article  Google Scholar 

  27. Justesen S, Harndahl M, Lamberth K et al (2009) Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Immunome Res 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jensen PE, Moore JC, Lukacher AE (1998) A europium fluoroimmunoassay for measuring peptide binding to MHC class I molecules. J Immunol Methods 215:71–80

    Article  PubMed  CAS  Google Scholar 

  29. Jiang W, Boder ET (2010) High-throughput engineering and analysis of peptide binding to class II MHC. Proc Natl Acad Sci U S A 107:13258–13263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Narayan K, Su KW, Chou C-L et al (2009) HLA-DM mediates peptide exchange by interacting transiently and repeatedly with HLA-DR1. Mol Immunol 46:3157–3162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu G, Carter B, Bricken T et al (2020) Computationally optimized SARS-CoV-2 MHC class I and II vaccine formulations predicted to target human haplotype distributions. Cell Syst 11:131–144.e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dar H, Zaheer T, Rehman MT et al (2016) Prediction of promiscuous T-cell epitopes in the Zika virus polyprotein: an in silico approach. Asian Pac J Trop Med 9:844–850

    Article  PubMed  CAS  Google Scholar 

  33. Liao WWP, Arthur JW (2011) Predicting peptide binding to major histocompatibility complex molecules. Autoimmun Rev 10:469–473

    Article  PubMed  CAS  Google Scholar 

  34. Nielsen M, Lund O, Buus S et al (2010) MHC class II epitope predictive algorithms. Immunology 130:319–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Luo H, Ye H, Ng HW et al (2015) Machine learning methods for predicting HLA-peptide binding activity. Bioinform Biol Insights 9:21–29

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Vita R, Mahajan S, Overton JA et al (2019) The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343

    Article  PubMed  CAS  Google Scholar 

  37. Huang M, Huang W, Wen F et al (2017) Efficient estimation of binding free energies between peptides and an MHC class II molecule using coarse-grained molecular dynamics simulations with a weighted histogram analysis method. J Comput Chem 38:2007–2019

    Article  PubMed  CAS  Google Scholar 

  38. Lin HH, Zhang GL, Tongchusak S et al (2008) Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics 9:S22

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smith MR, Bugada LF, Wen F (2020) Rapid microsphere-assisted peptide screening (MAPS) of promiscuous MHCII-binding peptides in Zika virus envelope protein. AICHE J 66:e16697

    Article  PubMed  CAS  Google Scholar 

  40. Reynolds C, Goudet A, Jenjaroen K et al (2015) T cell immunity to the alkyl Hydroperoxide reductase of Burkholderia pseudomallei : a correlate of disease outcome in acute Melioidosis. J Immunol 194:4814–4824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Maiers M, Gragert L, Klitz W (2007) High-resolution HLA alleles and haplotypes in the United States population. Hum Immunol 68:779–788

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bugada, L.F., Smith, M.R., Wen, F. (2022). Rapid Identification of MHCII-Binding Peptides Through Microsphere-Assisted Peptide Screening (MAPS). In: Huang, H., Davis, M.M. (eds) T-Cell Repertoire Characterization. Methods in Molecular Biology, vol 2574. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2712-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2712-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2711-2

  • Online ISBN: 978-1-0716-2712-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics