Skip to main content

Untargeted Metabolomics by Liquid Chromatography–Mass Spectrometry in Biomedical Research

  • Protocol
  • First Online:
Mass Spectrometry for Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2571))

Abstract

Metabolomics, alone or in combination with other omics sciences, has shown great relevance in a large number of investigations in different branches of biomedicine, often providing novel discoveries and helping to expand the knowledge. Metabolomics analyses are carried out using different techniques, but in this chapter, we focus on liquid chromatography coupled to high-resolution mass spectrometry. The designated methodology consists of an untargeted approach for the analysis of plasma samples. The use of this method, with a reverse-phase column and electrospray ionization in positive mode, covers the detection of a broad range of metabolites, mainly of nonpolar and of intermediate polarity. This chapter also reviews the mass fragmentation spectra for the identification of bile acids, acylcarnitines, and glycerophospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martín-Blázquez A, Díaz C, González-Flores E et al (2019) Untargeted LC-HRMS-based metabolomics to identify novel biomarkers of metastatic colorectal cancer. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-55952-8

    Article  CAS  Google Scholar 

  2. García-Fontana B, Morales-Santana S, Díaz Navarro C et al (2016) Metabolomic profile related to cardiovascular disease in patients with type 2 diabetes mellitus: a pilot study. Talanta 148:135–143. https://doi.org/10.1016/j.talanta.2015.10.070

    Article  CAS  PubMed  Google Scholar 

  3. Wang H, Liang S, Wang M et al (2016) Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci 41(1):27–37. https://doi.org/10.1503/jpn.140009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Niedzwiecki MM, Walker DI, Howell JC et al (2020) High-resolution metabolomic profiling of Alzheimer’s disease in plasma. Ann Clin Transl Neurol 7(1):36–45. https://doi.org/10.1002/acn3.50956

    Article  CAS  PubMed  Google Scholar 

  5. Dubuis S, Ortmayr K, Zampieri M (2018) A framework for large-scale metabolome drug profiling links coenzyme a metabolism to the toxicity of anti-cancer drug dichloroacetate. Commun Biol 1(1):1–11. https://doi.org/10.1038/s42003-018-0111-x

    Article  CAS  Google Scholar 

  6. Zampieri M, Szappanos B, Buchieri MV et al (2018) High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci Transl Med 10(429). https://doi.org/10.1126/scitranslmed.aal3973

  7. Steuer AE, Brockbals L, Kraemer T (2019, May) Metabolomic strategies in biomarker research-new approach for indirect identification of drug consumption and sample manipulation in clinical and forensic toxicology. Front Chem 7. https://doi.org/10.3389/fchem.2019.00319

  8. Díaz C, Pérez Del Palacio J, Valero-Guillén PL et al (2019) Comparative metabolomics between mycobacterium tuberculosis and the MTBVAC vaccine candidate. ACS Infect Dis 5(8):1317–1326. https://doi.org/10.1021/acsinfecdis.9b00008

    Article  CAS  PubMed  Google Scholar 

  9. His M, Viallon V, Dossus L et al (2019) Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med 17(1). https://doi.org/10.1186/s12916-019-1408-4

  10. Isa F, Collins S, Lee MH et al (2018) Mass spectrometric identification of urinary biomarkers of pulmonary tuberculosis. EBioMedicine 31:157–165. https://doi.org/10.1016/j.ebiom.2018.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wurtz P, Havulinna AS, Soininen P et al (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 131(9):774–785. https://doi.org/10.1161/CIRCULATIONAHA.114.013116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinu FR, Goldansaz SA, Jaine J (2019) Translational metabolomics: current challenges and future opportunities. Meta 9(6). https://doi.org/10.3390/metabo9060108

  13. Walker DI, Valvi D, Rothman N, Lan Q, Miller GW, Jones DP (2019) The metabolome: a key measure for exposome research in epidemiology. Curr Epidemiol Rep 6:93–103. https://doi.org/10.1007/s40471-019-00187-4

  14. Gangemi S, Gofita E, Costa C et al (2016) Occupational and environmental exposure to pesticides and cytokine pathways in chronic diseases (review). Int J Mol Med 38(4):1012–1020. https://doi.org/10.3892/ijmm.2016.2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beger RD, Dunn W, Schmidt MA, et al. (2016) Metabolomics enables precision medicine: “A White Paper, Community Perspective.” Metabolomics 12(10). https://doi.org/10.1007/s11306-016-1094-6

  16. Castelli FA, Rosati G, Moguet C et al (2021) Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal Bioanal Chem. https://doi.org/10.1007/s00216-021-03586-z

  17. Chevre R, Silvestre-Roig C, Soehnlein O (2018) Nutritional modulation of innate immunity: the fat–bile–gut connection. Trends Endocrinol Metab 29(10):686–698. https://doi.org/10.1016/j.tem.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  18. Romick-Rosendale LE, Haslam DB, Lane A et al (2018) Antibiotic exposure and reduced short chain fatty acid production after hematopoietic stem cell transplant. Biol Blood Marrow Transplant 24(12):2418–2424. https://doi.org/10.1016/j.bbmt.2018.07.030

    Article  CAS  PubMed  Google Scholar 

  19. Sen P, Lamichhane S, Mathema VB et al (2021) Deep learning meets metabolomics: a methodological perspective. Brief Bioinform 22(2):1531–1542. https://doi.org/10.1093/bib/bbaa204

    Article  PubMed  Google Scholar 

  20. Liebal UW, Phan ANT, Sudhakar M, Raman K, Blank LM (2020) Machine learning applications for mass spectrometry-based metabolomics. Meta 10(6):1–23. https://doi.org/10.3390/metabo10060243

    Article  CAS  Google Scholar 

  21. Pomyen Y, Wanichthanarak K, Poungsombat P, Fahrmann J, Grapov D, Khoomrung S (2020) Deep metabolome: applications of deep learning in metabolomics. Comput Struct Biotechnol J 18:2818–2825. https://doi.org/10.1016/j.csbj.2020.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Díaz-Beltrán L, González-Olmedo C, Luque-Caro N et al (2021) Human plasma metabolomics for biomarker discovery: targeting the molecular subtypes in breast cancer. Cancers (Basel) 13(1):1–18. https://doi.org/10.3390/cancers13010147

    Article  CAS  Google Scholar 

  23. Quinn KD, Nguyen NQT, Wach MM, Wood TD (2012) Tandem mass spectrometry of Bilin tetrapyrroles by electrospray ionization and collision-induced dissociation. Rapid Commun Mass Spectrom 26(16):1767–1775. https://doi.org/10.1002/rcm.6287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giesbertz P, Ecker J, Haag A, Spanier B, Daniel H (2015) An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues. J Lipid Res 56(10):2029–2039. https://doi.org/10.1194/jlr.D061721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hsu FF, Turk J (2003) Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes. J Am Soc Mass Spectrom 14(4):352–363. https://doi.org/10.1016/S1044-0305(03)00064-3

    Article  CAS  PubMed  Google Scholar 

  26. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22(5):332–364. https://doi.org/10.1002/mas.10061

    Article  CAS  PubMed  Google Scholar 

  27. Hsu FF, Turk J, Thukkani AK, Messner MC, Wildsmith KR, Ford DA (2003) Characterization of alkylacyl, alk-1-enylacyl and lyso subclasses of glycerophosphocholine by tandem quadrupole mass spectrometry with electrospray ionization. J Mass Spectrom 38(7):752–763. https://doi.org/10.1002/jms.491

    Article  CAS  PubMed  Google Scholar 

  28. Brouwers JFHM, Vernooij EAAM, Tielens AGM, Van Golde LMG (1999) Rapid separation and identification of phosphatidylethanolamine molecular species. J Lipid Res 40(1):164–169. https://doi.org/10.1016/s0022-2275(20)33352-6

    Article  CAS  PubMed  Google Scholar 

  29. Kerwin JL, Tuininga AR, Ericsson LH (1994) Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res 35(6):1102–1114. https://doi.org/10.1016/s0022-2275(20)40106-3

    Article  CAS  PubMed  Google Scholar 

  30. Pi J, Wu X, Feng Y (2016) Fragmentation patterns of five types of phospholipids by ultra-high-performance liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Anal Methods 8(6):1319–1332. https://doi.org/10.1039/C5AY00776C

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Fundación MEDINA for funding and Dr. José Pérez del Palacio for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caridad Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Díaz, C., González-Olmedo, C. (2023). Untargeted Metabolomics by Liquid Chromatography–Mass Spectrometry in Biomedical Research. In: González-Domínguez, R. (eds) Mass Spectrometry for Metabolomics. Methods in Molecular Biology, vol 2571. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2699-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2699-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2698-6

  • Online ISBN: 978-1-0716-2699-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics