Skip to main content

Aptamer–Field-Effect Transistors for Small-Molecule Sensing in Complex Environments

  • Protocol
  • First Online:
Nucleic Acid Aptamers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2570))

Abstract

Aptamer-functionalized field-effect transistor (FET) biosensors enable detection of small-molecule targets in complex environments such as tissue and blood. Conventional FET-based platforms suffer from Debye screening in high ionic strength physiological environments where the effective sensing distance is limited to less than a nanometer from the surface of the sensor. Aptamers that undergo significant conformational rearrangement of negatively charged backbones upon target recognition within or in close proximity to the Debye length, facilitate the transduction of electronic signals through the semiconducting channel. Herein, the fabrication of high-performance, ultrathin-film FETs and subsequent aptamer functionalization are described. Moreover, electronic sensing measurement protocols alongside calibration methods to minimize device-to-device variations are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang Y, Tian B (2018) Inorganic semiconductor biointerfaces. Nat Rev Mater 3:473–490

    Article  Google Scholar 

  2. Kesler V, Murmann B, Tom Soh H (2020) Going beyond the debye length: overcoming charge screening limitations in next-generation bioelectronic sensors. ACS Nano 14(12):16194–16201

    Article  CAS  Google Scholar 

  3. Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007) Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett 7:3405–3409

    Article  CAS  Google Scholar 

  4. Yang KA, Pei R, Stojanovic MN (2016) In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods 106:58–65

    Article  CAS  Google Scholar 

  5. Nakatsuka N, Yang K-A, Abendroth JM, Cheung KM, Xu X, Yang H, Zhao C, Zhu B, Rim YS, Yang Y, Weiss PS, Stojanović MN, Andrews AM (2018) Aptamer–field-effect transistors overcome debye length limitations for small-molecule sensing. Science 362:319–324

    Article  CAS  Google Scholar 

  6. Cheung KM, Yang K-A, Nakatsuka N, Zhao C, Ye M, Jung ME, Yang H, Weiss PS, Stojanović MN, Andrews AM (2019) Phenylalanine monitoring via aptamer-field-effect transistor sensors. ACS Sens 4:3308–3317

    Article  CAS  Google Scholar 

  7. Severs D, Hoorn EJ, Rookmaaker MB (2015) A critical appraisal of intravenous fluids: from the physiological basis to clinical evidence. Nephrol Dial Transplant 30:178–187

    Article  CAS  Google Scholar 

  8. Holy TE, Dulac C, Meister M (2000) Responses of vomeronasal neurons to natural stimuli. Science 289:1569–1572

    Article  CAS  Google Scholar 

  9. Takayuki Ohira RS (2013) Development of artificial cerebrospinal fluid: basic experiments, and phase II and III clinical trials. J Neurol Neurophysiol 4:1–8

    Article  Google Scholar 

  10. Harvey CJ, LeBouf RF, Stefaniak AB (2010) Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol Vitr 24:1790–1796

    Article  CAS  Google Scholar 

  11. Chicharro JL, Lucía A, Pérez M, Vaquero AF, Ureña R (1998) Saliva composition and exercise. Sports Med 1998

    Google Scholar 

  12. Ishikawa FN, Curreli M, Chang H, Chen P, Zhang R, Cote RJ, Thompson ME, Zhou C (2009) A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano 3:3969–3976

    Article  CAS  Google Scholar 

  13. Kim J, Rim YS, Chen H, Cao HH, Nakatsuka N, Hinton HL, Zhao C, Andrews AM, Yang Y, Weiss PS (2015) Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography. ACS Nano 9:4572–4582

    Article  CAS  Google Scholar 

  14. Curreli M, Li C, Sun Y, Lei B, Gundersen MA, Thompson ME, Zhou C (2005) Selective functionalization of In2O3 nanowire mat devices for biosensing applications. J Am Chem Soc 127:6922–6923

    Article  CAS  Google Scholar 

  15. Ishikawa FN, Chang HK, Curreli M, Liao HI, Olson CA, Chen PC, Zhang R, Roberts RW, Sun R, Cote RJ, Thompson ME, Zhou C (2009) Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3:1219–1224

    Article  CAS  Google Scholar 

  16. Hwang YH, Seo JS, Yun JM, Park HJ, Yang S, Park SHK, Bae BS (2013) An “aqueous route” for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater 5:1–8

    Google Scholar 

  17. Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Vörös J, Nakatsuka N (2021) Nonspecific binding—fundamental concepts and consequences for biosensing applications. Chem Rev 121(13):8095–8160

    Google Scholar 

  18. Jönsson U, Olofsson G, Malmqvist M, Rönnberg I (1985) Chemical vapour deposition of silanes. Thin Solid Films 124:117–123

    Article  Google Scholar 

  19. Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100:31–50

    Article  CAS  Google Scholar 

  20. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  Google Scholar 

  21. Nakatsuka N, Cao HH, Deshayes S, Melkonian AL, Kasko AM, Weiss PS, Andrews AM (2018) Aptamer recognition of multiplexed small-molecule-functionalized substrates. ACS Appl Mater Interfaces 10:23490–23500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number GrapheneCore3 881603. The author thanks Dr. Kevin M. Cheung and Dr. Chuanzhen Zhao for helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nako Nakatsuka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakatsuka, N. (2023). Aptamer–Field-Effect Transistors for Small-Molecule Sensing in Complex Environments. In: Mayer, G., Menger, M.M. (eds) Nucleic Acid Aptamers. Methods in Molecular Biology, vol 2570. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2695-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2695-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2694-8

  • Online ISBN: 978-1-0716-2695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics