Skip to main content

Probing of Fluorogenic RNA Aptamers via Supramolecular Förster Resonance Energy Transfer with a Universal Fluorescent Nucleobase Analog

  • Protocol
  • First Online:
Nucleic Acid Aptamers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2570))

  • 1509 Accesses

Abstract

Fluorogenic RNA aptamers are synthetic RNAs that have been evolved by in vitro selection methods to bind and light up conditionally fluorescent organic ligands. Compared with other probes for RNA detection, they are less invasive than hybridization-based methods (FISH, molecular beacons) and are considerably smaller than fluorescent protein-recruiting systems (MS2, Pumilio variants). Fluorogenic aptamers have therefore found widespread use as genetically encodable tags for RNA detection in live cells and have also been used in combination with riboswitches to construct versatile metabolite sensors for in vitro use. Their success builds on a fundamental understanding of their three-dimensional structure to explain the mechanisms of ligand interaction and to rationally design functional aptamer devices. In this protocol, we describe a supramolecular FRET-based structure probing method for fluorogenic aptamers that exploits distance- and orientation-dependent energy transfer efficiencies between site-specifically incorporated fluorescent nucleoside analogs and non-covalently bound ligands, exemplified by 4-cyanoindol riboside (4CI) and the DMHBI+-binding RNA aptamer Chili. This method yields structural restraints that bridge the gap between traditional low-resolution secondary structure probing methods and more elaborate high-resolution methods such as X-ray crystallography and NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weeks KM (2010) Advances in RNA structure analysis by chemical probing. Curr Opin Struct Biol 20:295–304

    Article  CAS  Google Scholar 

  2. Ge P, Zhang S (2015) Computational analysis of RNA structures with chemical probing data. Methods 79–80:60–66

    Article  Google Scholar 

  3. Tian S, Das R (2016) RNA structure through multidimensional chemical mapping. Q Rev Biophys 49:e7

    Article  Google Scholar 

  4. Micura R, Höbartner C (2020) Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 49:7331–7353

    Article  CAS  Google Scholar 

  5. Perez-Gonzalez C, Lafontaine DA, Penedo JC (2016) Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes. Front Chem 4:33

    Article  Google Scholar 

  6. Wilhelmsson LM (2010) Fluorescent nucleic acid base analogues. Q Rev Biophys 43:159–183

    Article  CAS  Google Scholar 

  7. Souliere MF, Haller A, Rieder R et al (2011) A powerful approach for the selection of 2-aminopurine substitution sites to investigate RNA folding. J Am Chem Soc 133:16161–16167

    Article  CAS  Google Scholar 

  8. Souliere MF, Micura R (2014) Use of SHAPE to select 2AP substitution sites for RNA-ligand interactions and dynamics studies. Methods Mol Biol 1103:227–239

    Article  CAS  Google Scholar 

  9. Stivers JT (1998) 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects. Nucleic Acids Res 26:3837–3844

    Article  CAS  Google Scholar 

  10. Haller A, Souliere MF, Micura R (2011) The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44:1339–1348

    Article  CAS  Google Scholar 

  11. Katilius E, Katiliene Z, Woodbury NW (2006) Signaling aptamers created using fluorescent nucleotide analogues. Anal Chem 78:6484–6489

    Article  CAS  Google Scholar 

  12. Gustmann H, Segler AJ, Gophane DB et al (2019) Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer. Nucleic Acids Res 47:15–28

    Article  CAS  Google Scholar 

  13. Xie Y, Dix AV, Tor Y (2009) FRET enabled real time detection of RNA-small molecule binding. J Am Chem Soc 131:17605–17614

    Article  CAS  Google Scholar 

  14. Sinkeldam RW, Tor Y (2019) FRET assay for ligands targeting the bacterial A-site RNA. Methods Mol Biol 1973:251–260

    Article  CAS  Google Scholar 

  15. Rieder R, Lang K, Graber D et al (2007) Ligand-induced folding of the adenosine deaminase A-riboswitch and implications on riboswitch translational control. Chembiochem 8:896–902

    Article  CAS  Google Scholar 

  16. Haller A, Rieder U, Aigner M et al (2011) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7:393

    Article  CAS  Google Scholar 

  17. Steinmetzger C, Palanisamy N, Gore KR et al (2019) A multicolor large stokes shift fluorogen-activating RNA aptamer with cationic chromophores. Chemistry 25:1931–1935

    Article  CAS  Google Scholar 

  18. Steinmetzger C, Bessi I, Lenz AK et al (2019) Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer. Nucleic Acids Res 47:11538–11550

    CAS  Google Scholar 

  19. Passow KT, Harki DA (2018) 4-Cyanoindole-2′-deoxyribonucleoside (4CIN): a universal fluorescent nucleoside analogue. Org Lett 20:4310–4313

    Article  CAS  Google Scholar 

  20. Steinmetzger C, Bäuerlein C, Höbartner C (2020) Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers. Angew Chem Int Ed 59:6760–6764

    Article  CAS  Google Scholar 

  21. Rieder R, Höbartner C, Micura R (2009) Enzymatic ligation strategies for the preparation of purine riboswitches with site-specific chemical modifications. Methods Mol Biol 540:15–24

    Article  CAS  Google Scholar 

  22. Horn T, Urdea MS (1986) A chemical 5′-phosphorylation of oligodeoxyribonucleotides. DNA 5:421–426

    Article  CAS  Google Scholar 

  23. Sillen A, Engelborghs Y (1998) The correct use of “average” fluorescence parameters. Photochem Photobiol 67:475–486

    CAS  Google Scholar 

  24. Lakowicz JR (2010) Principles of fluorescence spectroscopy. Springer, New York, NY

    Google Scholar 

  25. Füchtbauer AF, Wranne MS, Bood M et al (2019) Interbase FRET in RNA: from A to Z. Nucleic Acids Res 47:9990–9997

    Article  Google Scholar 

  26. Cantor CR, Saenger W (1984) Principles of nucleic acid structure. Springer, New York, NY

    Google Scholar 

  27. England TE, Uhlenbeck OC (1978) Enzymatic oligoribonucleotide synthesis with T4 RNA ligase. Biochemistry 17:2069–2076

    Article  CAS  Google Scholar 

  28. Romaniuk E, Mclaughlin LW, Neilson T et al (1982) The effect of acceptor oligoribonucleotide sequence on the T4 RNA ligase reaction. Eur J Biochem 125:639–643

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council (ERC-CoG grant No. 682586 to C.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Höbartner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Steinmetzger, C., Höbartner, C. (2023). Probing of Fluorogenic RNA Aptamers via Supramolecular Förster Resonance Energy Transfer with a Universal Fluorescent Nucleobase Analog. In: Mayer, G., Menger, M.M. (eds) Nucleic Acid Aptamers. Methods in Molecular Biology, vol 2570. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2695-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2695-5_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2694-8

  • Online ISBN: 978-1-0716-2695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics