Skip to main content

Lentiviral Transduction of Nonhuman Primate Hematopoietic Stem and Progenitor Cells

  • Protocol
  • First Online:
Hematopoietic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2567))

  • 1328 Accesses

Abstract

The nonhuman primate (NHP) animal model is an important predictive preclinical model for developing gene and cell therapies. It is also an experimental animal model used to study hematopoietic stem and progenitor cell (HSPC) biology, with the capability of serving as a step for the translation of the basic research concepts from small animals to humans. Lentiviral vectors are currently the standard gene delivery vehicles for transduction of HSPCs in the clinical setting. They have proven to be less genotoxic and more efficient than the previously used murine γ-retroviruses. Transplantation of lentiviral vector–transduced HSPCs into autologous macaques has been well developed over the past two decades. In this chapter, we provide detailed methodologies for lentiviral vector transduction of rhesus macaque HSPCs, including production and titration of lentiviral vector, purification of CD34+ HSPCs, and lentiviral vector transduction and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dunbar CE et al (2018) Gene therapy comes of age. Science 359(6372):eaan4672

    Article  Google Scholar 

  2. Larochelle A, Dunbar CE (2013) Hematopoietic stem cell gene therapy:assessing the relevance of preclinical models. Semin Hematol 50:101–130

    Article  CAS  Google Scholar 

  3. Shepherd BE, Kiem H-P, Lansdorp PM et al (2007) Hematopoietic stem-cell behavior in nonhuman primates. Blood 110:1806–1813

    Article  CAS  Google Scholar 

  4. Radtke S, Adair JE, Giese MA et al (2017) A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Sci Transl Med 9(414):eaan1145

    Article  Google Scholar 

  5. Sestak K, Scheiners C, Wu XW et al (2007) Identification of anti-human CD antibodies reactive with rhesus macaque peripheral blood cells. Vet Immunol Immunopathol 119:21–26

    Article  CAS  Google Scholar 

  6. Larochelle A, Savona M, Wiggins M et al (2011) Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers. Blood 117:1550–1554

    Article  CAS  Google Scholar 

  7. Trobridge G, Beard BC, Kiem HP (2005) Hematopoietic stem cell transduction and amplification in large animal models. Hum Gene Ther 16:1355–1366

    Article  CAS  Google Scholar 

  8. Donahue RE, Dunbar CE (2001) Update on the use of nonhuman primate models for preclinical testing of gene therapy approaches targeting hematopoietic cells. Hum Gene Ther 12:607–617

    Article  CAS  Google Scholar 

  9. Wu C, Li B, Lu R et al (2014) Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell 14:486–499

    Article  CAS  Google Scholar 

  10. Koelle SJ, Espinoza DA, Wu C et al (2017) Quantitative stability of hematopoietic stem and progenitor cell clonal output in rhesus macaques receiving transplants. Blood 129:1448–1457

    Article  CAS  Google Scholar 

  11. Wu C, Espinoza DA, Koelle SJ et al (2018) Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci Immunol 3(29):eaat9781

    Article  Google Scholar 

  12. Yabe IM, Truitt LL, Espinoza DA et al (2018) Barcoding of macaque hematopoietic stem and progenitor cells: a robust platform to assess vector genotoxicity. Mol Ther Methods Clin Dev 11:143–154

    Article  CAS  Google Scholar 

  13. Naldini L (2015) Gene therapy returns to centre stage. Nature 526:351–360

    Article  CAS  Google Scholar 

  14. Naldini L, Trono D, Verma IM (2016) Lentiviral vectors, two decades later. Science 353:1101–1102

    Article  CAS  Google Scholar 

  15. Hematti P, Hong B-K, Ferguson C et al (2004) Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2:e423

    Article  Google Scholar 

  16. Baum C, Modlich U, Gohring G et al (2011) Concise review: managing genotoxicity in the therapeutic modification of stem cells. Stem Cells 29:1479–1484

    Article  CAS  Google Scholar 

  17. Moritz T, Patel VP, Williams DA (1994) Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors. J Clin Invest 93:1451–1457

    Article  CAS  Google Scholar 

  18. Ingrao D, Majdould S, Seye AK et al (2014) Concurrent measures of fusion and transduction efficiency of primary CD34+ cells with human immunodeficiency virus 1-based lentiviral vectors reveal different effects of transduction enhancers. Hum Gene Ther Methods 25:48–56

    Article  CAS  Google Scholar 

  19. Schott JW, Leon-Rico D, Ferreira CB et al (2019) Enhancing lentiviral and Alpharetroviral transduction of human hematopoietic stem cells for clinical application. Mol Ther Methods Clin Dev 14:134–147

    Article  CAS  Google Scholar 

  20. Uchida N, Nassehi T, Drysdale CM et al (2019) High-efficiency lentiviral transduction of human CD34(+) cells in high-density culture with Poloxamer and prostaglandin E2. Mol Ther Methods Clin Dev 13:187–196

    Article  CAS  Google Scholar 

  21. Trobridge GD, Wu RA, Beard BC et al (2009) Protection of stem cell-derived lymphocytes in a primate AIDS gene therapy model after in vivo selection. PLoS One 4:e7693

    Article  Google Scholar 

  22. Verhoeyen E, Relouzat F, Cambot M et al (2012) Stem cell factor-displaying simian immunodeficiency viral vectors together with a low conditioning regimen allow for long-term engraftment of gene-marked autologous hematopoietic stem cells in macaques. Hum Gene Ther 23:754–768

    Article  CAS  Google Scholar 

  23. Sakuma R, Noser JA, Ohmine S et al (2007) Inhibition of HIV-1 replication by simian restriction factors, TRIM5alpha and APOBEC3G. Gene Ther 14:185–189

    Article  CAS  Google Scholar 

  24. Uchida N, Washington KN, Hayakawa J et al (2009) Development of a human immunodeficiency virus type 1-based lentiviral vector that allows efficient transduction of both human and rhesus blood cells. J Virol 83:9854–9862

    Article  CAS  Google Scholar 

  25. Uchida N, Hargrove PW, Lap CJ et al (2012) High-efficiency transduction of rhesus hematopoietic repopulating cells by a modified HIV1-based lentiviral vector. Mol Ther J Am Soc Gene Ther 20:1882–1892

    Article  CAS  Google Scholar 

  26. Evans ME, Kumkhaek C, Hsieh MM et al (2014) TRIM5alpha variations influence transduction efficiency with lentiviral vectors in both human and rhesus CD34(+) cells in vitro and in vivo. Mol Ther 22:48–58

    Article  Google Scholar 

  27. Hematti P, Tuchman S, Larochelle A et al (2004) Comparison of retroviral transduction efficiency in CD34+ cells derived from bone marrow versus G-CSF-mobilized or G-CSF plus stem cell factor-mobilized peripheral blood in nonhuman primates. Stem Cells 22:1062–1069

    Article  CAS  Google Scholar 

  28. Donahue RE, Kirby MR, Metzger ME et al (1996) Peripheral blood CD34+ cells differ from bone marrow CD34+ cells in Thy- 1 expression and cell cycle status in nonhuman primates mobilized or not mobilized with granulocyte colony-stimulating factor and/or stem cell factor. Blood 87:1644–1653

    Article  CAS  Google Scholar 

  29. Donahue RE, Kuramoto K, Dunbar CE (2005) Chapter 22: Large animal models for stem and progenitor cell analysis. In: Coligan JE (ed) Current protocols in immunology: Unit 22A.1. Wiley, New York. https://doi.org/10.1002/0471142735.im22a01s69

    Chapter  Google Scholar 

  30. Haynes LD, Coonen J, Post J et al (2017) Collection of hematopoietic CD34 stem cells in rhesus macaques using Spectra Optia. J Clin Apher 32:288–294

    Article  Google Scholar 

  31. Garofalo M, Bennett A, Farese AM et al (2014) The delayed pulmonary syndrome following acute high-dose irradiation: a rhesus macaque model. Health Phys 106:56–72

    Article  CAS  Google Scholar 

  32. Uchid N, Weitzel RP, Shvygin A et al (2016) Total body irradiation must be delivered at high dose for efficient engraftment and tolerance in a rhesus stem cell gene therapy model. Mol Ther Methods Clin Dev 3:16059

    Article  Google Scholar 

  33. Uchida N, Nassehi T, Drysdale CM et al (2019) Busulfan combined with immunosuppression allows efficient engraftment of gene-modified cells in a rhesus macaque model. Mol Ther 27:1586–1596

    Article  CAS  Google Scholar 

  34. Palchaudhuri R, Saez B, Hoggatt J et al (2016) Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol 34:38–45

    Article  Google Scholar 

  35. Chhabra A, Ring AM, Weiskopf K et al (2016) Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Sci Transl Med 8:351ra105

    Article  Google Scholar 

  36. Kustikova OS, Wahlers A, Kuhlcke K et al (2003) Dose finding with retroviral vectors: correlation of retroviral vector copy numbers in single cells with gene transfer efficiency in a cell population. Blood 102:3934–3937

    Article  CAS  Google Scholar 

  37. Yee JL, Vandeford TH, Didier ES et al (2016) Specific pathogen free macaque colonies: a review of principles and recent advances for viral testing and colony management. J Med Primatol 45:55–78

    Article  Google Scholar 

  38. Lam AC, Li K, Zhang XB et al (2001) Preclinical ex vivo expansion of cord blood hematopoietic stem and progenitor cells: duration of culture; the media, serum supplements, and growth factors used; and engraftment in NOD/SCID mice. Transfusion 41:1567–1576

    Article  CAS  Google Scholar 

  39. Delville M, Soheili T, Bellier F et al (2018) A nontoxic transduction enhancer enables highly efficient lentiviral transduction of primary murine T cells and hematopoietic stem cells. Mol Ther Methods Clin Dev 10:341–347

    Article  CAS  Google Scholar 

  40. Simon B, Harrer DC, Thirion C et al (2019) Enhancing lentiviral transduction to generate melanoma-specific human T cells for cancer immunotherapy. J Immunol Methods 472:55–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Idalia Yabe, Xing Fan, and Stefan Cordes for their helpful discussions and critical reading and to Naoya Uchida, John Tisdale, Robert Donahue, So Gun Hong, Aylin Bonifacino, Stephanie Sellers, and many others within the laboratory and the primate facility for their contributions to development of rhesus macaque transplantation and gene transfer methodologies. We acknowledge funding from the NHLBI Division of Intramural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia E. Dunbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, C., Hong, S.G., Bonifacino, A., Dunbar, C.E. (2023). Lentiviral Transduction of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. In: Pelus, L.M., Hoggatt, J. (eds) Hematopoietic Stem Cells. Methods in Molecular Biology, vol 2567. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2679-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2679-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2678-8

  • Online ISBN: 978-1-0716-2679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics