Skip to main content

Detection of DNA Damage in Hematopoietic Stem Cells

  • Protocol
  • First Online:
Hematopoietic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2567))

  • 1225 Accesses

Abstract

Single-cell gel electrophoresis (SCGE or Comet assay) and the Fast Halo assay, also known as the Halo assay, are powerful tools to generate DNA damage measurements with single-cell resolution. Though these techniques are prone to have variability, they can be robust tools for quantifying DNA damage when planned and executed carefully. Here, we present both assays and highlight each technique’s advantages and challenges in measuring DNA damage in cells with limiting cell number, such as hematopoietic stem cells (HSCs). The Comet assay is highly sensitive at the cost of increased variability. The Halo assay attenuates some of the effects of variability present in the Comet assay but does not eliminate them entirely and is less sensitive. Overall, the Comet and Halo assays are powerful means of directly measuring DNA damage. We recommend the below methods for detecting damage in hematopoietic stem cells, but the methods can easily be adjusted for measuring damage in any type of single cells in suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, Hildner K, Guachalla LM, Gompf A, Hartmann D, Schambach A, Wuestefeld T, Dauch D, Schrezenmeier H, Hofmann WK, Nakauchi H, Ju Z, Kestler HA, Zender L, Rudolph KL (2012) A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148(5):1001–1014. https://doi.org/10.1016/j.cell.2012.01.040

    Article  CAS  PubMed  Google Scholar 

  2. Yahata T, Takanashi T, Muguruma Y, Ibrahim AA, Matsuzawa H, Uno T, Sheng Y, Onizuka M, Ito M, Kato S, Ando K (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118(11):2941–2950. https://doi.org/10.1182/blood-2011-01-330050

    Article  CAS  PubMed  Google Scholar 

  3. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199. https://doi.org/10.1073/pnas.0503280102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15(1):37–50. https://doi.org/10.1016/j.stem.2014.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McNeely T, Leone M, Yanai H, Beerman I (2019) DNA damage in aging, the stem cell perspective. Hum Genet. https://doi.org/10.1007/s00439-019-02047-z

  6. Vijg J (2000) Somatic mutations and aging: a re-evaluation. Mutat Res 447(1):117–135. https://doi.org/10.1016/s0027-5107(99)00202-x

    Article  CAS  PubMed  Google Scholar 

  7. Kohn KW, Erickson LC, Ewig RA, Friedman CA (1976) Fractionation of DNA from mammalian cells by alkaline elution. Biochemistry 15(21):4629–4637. https://doi.org/10.1021/bi00666a013

    Article  CAS  PubMed  Google Scholar 

  8. Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123(1):291–298. https://doi.org/10.1016/0006-291x(84)90411-x

    Article  CAS  PubMed  Google Scholar 

  9. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  10. Sestili P, Calcabrini C, Diaz AR, Fimognari C, Stocchi V (2017) The Fast-Halo assay for the detection of DNA damage. Methods Mol Biol 1644:75–93. https://doi.org/10.1007/978-1-4939-7187-9_6

    Article  CAS  PubMed  Google Scholar 

  11. Sestili P, Martinelli C, Stocchi V (2006) The fast halo assay: an improved method to quantify genomic DNA strand breakage at the single-cell level. Mutat Res 607(2):205–214. https://doi.org/10.1016/j.mrgentox.2006.04.018

    Article  CAS  PubMed  Google Scholar 

  12. Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23(3):143–151. https://doi.org/10.1093/mutage/gem051

    Article  CAS  PubMed  Google Scholar 

  13. Collins AR, Ma AG, Duthie SJ (1995) The kinetics of repair of oxidative DNA damage (strand breaks and oxidised pyrimidines) in human cells. Mutat Res 336(1):69–77. https://doi.org/10.1016/0921-8777(94)00043-6

    Article  CAS  PubMed  Google Scholar 

  14. Forchhammer L, Johansson C, Loft S, Moller L, Godschalk RW, Langie SA, Jones GD, Kwok RW, Collins AR, Azqueta A, Phillips DH, Sozeri O, Stepnik M, Palus J, Vogel U, Wallin H, Routledge MN, Handforth C, Allione A, Matullo G, Teixeira JP, Costa S, Riso P, Porrini M, Moller P (2010) Variation in the measurement of DNA damage by comet assay measured by the ECVAG inter-laboratory validation trial. Mutagenesis 25(2):113–123. https://doi.org/10.1093/mutage/gep048

    Article  CAS  PubMed  Google Scholar 

  15. Collins AR, El Yamani N, Lorenzo Y, Shaposhnikov S, Brunborg G, Azqueta A (2014) Controlling variation in the comet assay. Front Genet 5:359. https://doi.org/10.3389/fgene.2014.00359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maurya DK (2014) HaloJ: an ImageJ program for semiautomatic quantification of DNA damage at single-cell level. Int J Toxicol 33(5):362–366. https://doi.org/10.1177/1091581814549961

    Article  CAS  PubMed  Google Scholar 

  17. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121. https://doi.org/10.1016/j.cell.2005.05.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institutes of Health, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Beerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ayyar, S., Beerman, I. (2023). Detection of DNA Damage in Hematopoietic Stem Cells. In: Pelus, L.M., Hoggatt, J. (eds) Hematopoietic Stem Cells. Methods in Molecular Biology, vol 2567. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2679-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2679-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2678-8

  • Online ISBN: 978-1-0716-2679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics