Skip to main content

Localizing Molecules in Plant Cell Walls Using Fluorescence Microscopy

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2566))

  • 1479 Accesses

Abstract

Autofluorescence of plant tissues can be used as a label-free method to detect a range of phenolic-based cell wall components including lignin, suberin, and ferulate using widefield or confocal fluorescence microscopy. Likewise, fluorescently labeled antibodies can be used to localize specific carbohydrate molecules including arabinoxylan, β-1,4 galactan, glucomannan, glucuronoxylan, pectins, and xyloglucan. When combined, these two methods allow detailed study of topochemistry in different plant tissues for phenotyping of mutant varieties and plant biology studies. This article describes the protocols for fluorescent detection and imaging of molecules in plant cell walls using autofluorescence and immunofluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Micco V, Aronne G (2009) Combined histochemistry and autofluorescence for identifying lignin distribution in cell walls. Biotech Histochem 82:209–216. https://doi.org/10.1080/10520290701713981

    Article  CAS  Google Scholar 

  2. Biggs AR (1984) Intracellular suberin: occurrence and detection in tree bark. IAWA Bull 5:243–248

    Article  Google Scholar 

  3. Brundrett MC, Enstone DE, Peterson CA (1988) A berberine-aniline blue, fluorescent staining procedure for suberin, lignin, and callose in plant tissue. Protoplasma 146:133–142. https://doi.org/10.1007/BF01405922

    Article  Google Scholar 

  4. Arend M, Muninger M, Fromm J (2008) Unique occurrence of pectin-like fibrillar cell wall deposits in xylem fibres of poplar. Plant Biol 10(6):763–770. https://doi.org/10.1111/j.1438-8677.2008.00082.x

    Article  CAS  PubMed  Google Scholar 

  5. Chano V, López R, Pita P, Collada C, Soto A (2015) Proliferation of axial parenchymatic xylem cells is a key step in wound closure of girdled stems in Pinus canariensis. BMC Plant Biol 15:64. https://doi.org/10.1186/s12870-015-0447-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Naumann A, Polle A (2006) FTIR imaging as a new tool for cell wall analysis of wood. N Z J For Sci 36(1):54–59

    CAS  Google Scholar 

  7. Gierlinger N, Schwaninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254. https://doi.org/10.1104/pp.105.066993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koch G, Kleist G (2001) Application of scanning UV microspectrophotometry to localise lignins and phenolic extractives in plant cell walls. Holzforschung 55(6):563–567. https://doi.org/10.1515/HF.2001.091

    Article  CAS  Google Scholar 

  9. Donaldson LA (2013) Softwood and hardwood lignin fluorescence spectra of wood cell walls in different mounting media. IAWA J 34:3–19. https://doi.org/10.1163/22941932-00000002

    Article  Google Scholar 

  10. Donaldson LA (2019) Wood cell wall ultrastructure – the key to understanding wood properties and behaviour. IAWA J 40:645–672. https://doi.org/10.1163/22941932-40190258

    Article  Google Scholar 

  11. Donaldson LA (2020) Autofluorescence in plants. Molecules 25(10):2393. https://doi.org/10.3390/molecules25102393

    Article  CAS  PubMed Central  Google Scholar 

  12. Rost FWD (1995) Autofluorescence in plants, fungi, and bacteria. In: Rost FWD (ed) Fluorescence microscopy, vol 2. Cambridge University Press, Cambridge, pp 16–36

    Google Scholar 

  13. Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red fluorescence emission of plants: an overview. Photosynthetica 38:483–491. https://doi.org/10.1023/A:1012440903014

    Article  CAS  Google Scholar 

  14. García-Plazaola JI, Fernández-Marín B, Duke SO, Hernández A, López-Arbeloa F, Becerril JM (2015) Autofluorescence: biological functions and technical applications. Plant Sci 236:136–145. https://doi.org/10.1016/j.plantsci.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  15. Donaldson LA, Knox JP (2012) Localisation of cell wall polysaccharides in normal and compression wood of radiata pine – relationships with lignification and microfibril orientation. Plant Physiol 158:642–653. https://doi.org/10.1104/pp.111.184036

    Article  CAS  PubMed  Google Scholar 

  16. Sutherland P, Hallett I, Jones M (2009) Probing cell wall structure and development by the use of antibodies: a personal perspective. N Z J For Sci 39:197–205

    CAS  Google Scholar 

  17. Christiaens S, Van Buggenhout S, Ngouémazong ED, Vandevenne E, Fraeye I, Duvetter T et al (2011) Anti-homogalacturonan antibodies: a way to explore the effect of processing on pectin in fruits and vegetables? Food Res Int 44(1):225–234. https://doi.org/10.1016/j.foodres.2010.10.031

    Article  CAS  Google Scholar 

  18. Ng JK, Schröder R, Sutherland PW, Hallett IC, Hall MI, Prakash R et al (2013) Cell wall structures leading to cultivar differences in softening rates develop early during apple (Malus x domestica) fruit growth. BMC Plant Biol 13:183. https://doi.org/10.1186/1471-2229-13-183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Donaldson LA, Kroese HW, Hill SJ, Franich RA (2015) Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy. J Microsc 259:228–236. https://doi.org/10.1111/jmi.12257

    Article  CAS  PubMed  Google Scholar 

  20. Donaldson LA, Nanayakkara B, Radotić K, Djikanović-Golubović D, Mitrović A, Bogdanović J et al (2015) Xylem parenchyma cell walls lack a gravitropic response in conifer compression wood. Planta 242:1413–1424. https://doi.org/10.1007/s00425-015-2381-6

    Article  CAS  PubMed  Google Scholar 

  21. Mitrović A, Donaldson LA, Djikanović D, Bogdanović Pristov J, Simonović J, Mutavdžić D et al (2015) Analysis of static bending-induced compression wood formation in juvenile Picea omorika (Pancic) Purkyne. Trees 29:1533–1543. https://doi.org/10.1007/s00468-015-1234-z

    Article  Google Scholar 

  22. Donaldson L, Williams N (2018) Imaging and spectroscopy of natural fluorophores in pine needles. Plan Theory 7:10. https://doi.org/10.3390/plants7010010

    Article  CAS  Google Scholar 

  23. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142(23):4168–4179. https://doi.org/10.1242/dev.127613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Donaldson LA, Singh A, Raymond L, Hill S, Schmitt U (2019) Extractive distribution in Pseudotsuga menziesii: effects on cell wall porosity in sapwood and heartwood. IAWA J 40:721–740. https://doi.org/10.1163/22941932-40190248

    Article  Google Scholar 

  25. Harris PJ, Hartley RD (1976) Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259:508–510

    Article  CAS  Google Scholar 

  26. Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr Res 338(17):1791–1800. https://doi.org/10.1016/S0008-6215(03)00272-6

    Article  CAS  Google Scholar 

  27. Smallwood M, Yates EA, Willats WGT, Martin H, Knox JP (1996) Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198(3):452–459. https://doi.org/10.1007/BF00620063

    Article  CAS  Google Scholar 

  28. Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-D-galactan. Plant Physiol 113:1405–1412. https://doi.org/10.1104/pp.113.4.1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1→5)-α-L-arabinan. Carbohydr Res 308(1/2):149–142. https://doi.org/10.1016/S0008-6215(98)00070-6

    Article  CAS  PubMed  Google Scholar 

  30. Clausen MH, Ralet M-C, Willats WGT, McCartney L, Marcus SE, Thibault J-F et al (2004) A monoclonal antibody to feruloylated-(1→4)-β-D-galactan. Planta 219(6):1036–1041. https://doi.org/10.1007/s00425-004-1309-3

    Article  CAS  PubMed  Google Scholar 

  31. McCartney L, Marcus SE, Knox JP (2005) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53:543–546. https://doi.org/10.1369/jhc.4B6578.2005

    Article  CAS  PubMed  Google Scholar 

  32. Marcus SE, Verhertbruggen Y, Hervé C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL et al (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60. https://doi.org/10.1186/1471-2229/8/60

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verhertbruggen Y, Marcus SE, Haeger A, Ordaz-Ortiz JJ, Knox JP (2009) An extended set of monoclonal antibodies to pectic homogalacturonan. Carbohydr Res 344(14):1858–1862. https://doi.org/10.1016/j.carres.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  34. Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L et al (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203. https://doi.org/10.1111/j.1365-313X.2010.04319.x

    Article  CAS  PubMed  Google Scholar 

  35. Müse G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C et al (1997) Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201:146–159. https://doi.org/10.1007/BF01007699

    Article  Google Scholar 

  36. Joseleau J-P, Faix O, Kuroda K-I, Ruel K (2004) A polyclonal antibody directed against syringylpropane epitopes of native lignins. C R Biol 327(9–10):809–815. https://doi.org/10.1016/j.crvi.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  37. Kukkola EM, Koutaniemi S, Pöllänen E, Gustafsson M, Karhunen P, Lundell TK et al (2004) The dibenzodioxocin lignin substructure is abundant in the inner part of the secondary wall in Norway spruce and silver birch xylem. Planta 218:497–500. https://doi.org/10.1007/s00425-003-1107-3

    Article  CAS  PubMed  Google Scholar 

  38. Tranquet O, Saulnier L, Utille J-P, Ralph J, Guillon F (2009) Monoclonal antibodies to p-coumarate. Phytochemistry 70:1366–1373. https://doi.org/10.1016/j.phytochem.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  39. Donaldson LA, Cairns M, Hill SJ (2018) Comparison of micropore distribution in cell walls of softwood and hardwood xylem. Plant Physiol 178:1142–1153. https://doi.org/10.1104/pp.18.00883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dickson A, Nanayakkara B, Sellier D, Meason D, Donaldson L, Brownlie R (2017) Fluorescence imaging of cambial zones to study wood formation in Pinus radiata D. Don. Trees 31(2):479–490. https://doi.org/10.1007/s00468-016-1469-3

    Article  CAS  Google Scholar 

  41. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  42. Neher RA, Mitkovski M, Kirchhoff F, Neher E, Theis FJ, Zeug A (2009) Blind source separation techniques for the decomposition of multiply labelled fluorescence images. Biophys J 96:3791–3800. https://doi.org/10.1016/j.bpj.2008.10.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by Scion’s Strategic Science Investment Fund, Ministry of Business, Innovation and Employment, Wellington, New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd A. Donaldson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Donaldson, L.A. (2023). Localizing Molecules in Plant Cell Walls Using Fluorescence Microscopy. In: Pellicciari, C., Biggiogera, M., Malatesta, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 2566. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2675-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2675-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2674-0

  • Online ISBN: 978-1-0716-2675-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics