Skip to main content

Quantal Release Analysis of Electrochemically Active Molecules Using Single-Cell Amperometry

  • Protocol
  • First Online:
Chromaffin Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2565))

Abstract

Single-cell amperometry is a powerful technique that permits the detection of electrochemically active transmitters, such as catecholamines, histamine, or serotonin, released by exocytosis from secretory cells.

Amperometry has two main characteristics that make it ideal for the study of exocytosis at the single-cell level with single-vesicle resolution quantal release. (i) It is noninvasive. The carbon fiber microelectrode can be carefully positioned on plasma membrane of a single cell, allowing the detection of the oxidation current of the secreted molecules. (ii) High temporal resolution and sensitivity. Exocytosis can be monitored with a real-time resolution that allows the determination of the kinetics release with an attomol detection sensitivity, which ensures an accurate calculation of the amount of transmitter released.

Here, we compile some recommendations and advices to perform amperometry quantal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A 88:10754–10758

    Article  CAS  Google Scholar 

  2. Segura F, Brioso MA, Gómez JF, Machado JD, Borges R (2000) Automatic analysis for amperometrical recordings of exocytosis. J Neurosci Methods 103:151–156

    Article  CAS  Google Scholar 

  3. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658

    Article  CAS  Google Scholar 

  4. Omiatek DM, Dong Y, Heien ML, Ewing AG (2010) Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles. ACS Chem Neurosci 1:234–245

    Article  CAS  Google Scholar 

  5. Ramachandran SB, Gillis KD (2019) Estimating amperometric spike parameters resulting from quantal exocytosis using curve fitting seeded by a matched-filter algorithm. J Neurosci Methods 311:360

    Article  Google Scholar 

  6. Ramachandran SB, Gillis KD (2018) A matched-filter algorithm to detect amperometric spikes resulting from quantal secretion. J Neurosci Methods 293:338

    Article  Google Scholar 

  7. Friedrich R, Ashery U (2010) From spike to graph-a complete automated single-spike analysis. J Neurosci Methods 193:271–280

    Article  Google Scholar 

  8. Jackson MB, Hsiao YT, Chang CW (2020) Fusion pore expansion and contraction during catecholamine release from endocrine cells. Biophys J 119:219

    Article  CAS  Google Scholar 

  9. Domínguez N, Rodríguez M, MacHado JD, Borges R (2012) Preparation and culture of adrenal chromaffin cells. Methods Mol Biol 846:223–234

    Article  Google Scholar 

  10. Machado JD, Montesinos MS, Borges R (2008) Good practices in single-cell amperometry. Methods Mol Biol 440:297–313

    Article  CAS  Google Scholar 

  11. Mundorf ML, Wightman RM (2002) Amperometry and cyclic voltammetry with carbon fiber microelectrodes at single cells. Curr Protoc Neurosci 18:6.14.1–6.14.22

    Article  Google Scholar 

  12. Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and microelectrode surface states. J Neurosci Methods 48:225–240

    Article  CAS  Google Scholar 

  13. Colliver TL, Hess EJ, Pothos EN, Sulzer D, Ewing AG (2000) Quantitative and statistical analysis of the shape of amperometric spikes recorded from two populations of cells. J Neurochem 74:1086–1097

    Article  CAS  Google Scholar 

  14. Gómez JF, Brioso MA, Machado JD, Sánchez JL, Borges R (2002) New approaches for analysis of amperometrical recordings. Ann N Y Acad Sci 971:647–654

    Article  Google Scholar 

  15. Westerink RHS, de Groot A, Vijverberg HP (2000) Heterogeneity of catecholamine-containing vesicles in PC12 cells. Biochem Biophys Res Commun, Elsevier 270(2):625–630

    Article  CAS  Google Scholar 

  16. Huang M, Delacruz JB, Ruelas JC, Rathore SS, Lindau M (2018) Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements. Pflugers Arch Eur J Physiol 470:113–123

    Article  CAS  Google Scholar 

  17. Dominguez N, Estevez-Herrera J, Borges R, Machado JD (2014) The interaction between chromogranin a and catecholamines governs exocytosis. FASEB J 28:4657–4667

    Article  CAS  Google Scholar 

  18. Estévez-Herrera J, Domínguez N, Pardo MR, González-Santana A, Westhead EW, Borges R, Machado JD (2016) ATP: the crucial component of secretory vesicles. Proc Natl Acad Sci U S A 113:E4098–E4106

    Article  Google Scholar 

  19. González-Santana A, Estévez-Herrera J, Seward EP, Borges R, Machado JD (2021) Glucagon-like peptide-1 receptor controls exocytosis in chromaffin cells by increasing full-fusion events. Cell Rep 36:109609

    Article  Google Scholar 

  20. Ranjbari E, Taleat Z, Mapar M, Aref M, Dunevall J, Ewing A (2020) Direct measurement of Total vesicular catecholamine content with electrochemical microwell arrays. Anal Chem 92:11325–11331

    Article  CAS  Google Scholar 

  21. Chen X, Gao Y, Hossain M, Gangopadhyay S, Gillis KD (2007) Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes. Lab Chip 8:161–169

    Article  Google Scholar 

  22. Gillis KD, Liu XA, Marcantoni A, Carabelli V (2018) Electrochemical measurement of quantal exocytosis using microchips. Pflugers Arch Eur J Physiol 470:97–112

    Article  CAS  Google Scholar 

  23. Huang M, Delacruz JB, Ruelas JC, Rathore SS, Lindau M (2018) Surface-modified CMOS IC electrochemical sensor array targeting single chromaffin cells for highly parallel amperometry measurements. Pflugers Arch 470:113–123

    Article  CAS  Google Scholar 

  24. Picollo F, Battiato A, Bernardi E, Plaitano M, Franchino C, Gosso S, Pasquarelli A, Carbone E, Olivero P, Carabelli V (2016) All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters. Sci Rep 6:20682. https://doi.org/10.1038/srep20682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baraibar AM, de Pascual R, Camacho M, Domínguez N, David Machado J, Gandía L, Borges R (2018) Distinct patterns of exocytosis elicited by Ca 2+, Sr 2+ and Ba 2+ in bovine chromaffin cells. Pflugers Arch Eur J Physiol 470:1459–1471

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Spanish Ministerio de Ciencia e Innovación (PID2020-116589GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José David Machado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Machado, J.D., Montenegro, P., Domínguez, N. (2023). Quantal Release Analysis of Electrochemically Active Molecules Using Single-Cell Amperometry. In: Borges, R. (eds) Chromaffin Cells. Methods in Molecular Biology, vol 2565. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2671-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2671-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2670-2

  • Online ISBN: 978-1-0716-2671-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics