Skip to main content

Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins

  • Protocol
  • First Online:
Phase-Separated Biomolecular Condensates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2563))

Abstract

Biomolecular condensates, physically underpinned to a significant extent by liquid–liquid phase separation (LLPS), are now widely recognized by numerous experimental studies to be of fundamental biological, biomedical, and biophysical importance. In the face of experimental discoveries, analytical formulations emerged as a powerful yet tractable tool in recent theoretical investigations of the role of LLPS in the assembly and dissociation of these condensates. The pertinent LLPS often involves, though not exclusively, intrinsically disordered proteins engaging in multivalent interactions that are governed by their amino acid sequences. For researchers interested in applying these theoretical methods, here we provide a practical guide to a set of computational techniques devised for extracting sequence-dependent LLPS properties from analytical formulations. The numerical procedures covered include those for the determination of spinodal and binodal phase boundaries from a general free energy function with examples based on the random phase approximation in polymer theory, construction of tie lines for multiple-component LLPS, and field-theoretic simulation of multiple-chain heteropolymeric systems using complex Langevin dynamics. Since a more accurate physical picture often requires comparing analytical theory against explicit-chain model predictions, a commonly utilized methodology for coarse-grained molecular dynamics simulations of sequence-specific LLPS is also briefly outlined.

Yi-Hsuan Lin, Jonas Wessén, and Tanmoy Pal contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hyman AA, Weber CA, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Rev Cell Dev Biol 30:39–58

    Article  CAS  PubMed  Google Scholar 

  3. Brangwynne CP, Tompa P, Pappu RV (2015) Polymer physics of intracellular phase transitions. Nat Phys 11:899–904

    Article  CAS  Google Scholar 

  4. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382

    Google Scholar 

  5. Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McSwiggen DT, Mir M, Darzacq X, Tjian R (2019) Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev 33:1619–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber CA, Zwicker D, Jülicher F, Lee CF (2019) Physics of active emulsions. Rep Prog Phys 82:064601

    Article  CAS  PubMed  Google Scholar 

  8. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin Y-H, Forman-Kay JD, Chan HS (2018) Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57:2499–2508

    Article  CAS  PubMed  Google Scholar 

  11. Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter R (2019) Temperature, hydrostatic pressure, and osmolyte effects on liquid-liquid phase separation in protein condensates: Physical chemistry and biological implications. Chem Eur J 57:13049–13069

    Article  Google Scholar 

  12. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY.

    Google Scholar 

  13. Overbeek JTG, Voorn MJ (1957) Phase separation in polyelectrolyte solutions. Theory of complex coacervation. J Cell Comp Physiol 49:7–26

    Article  CAS  Google Scholar 

  14. Rauscher S, Pomès R (2017) The liquid structure of elastin. eLife 6:e26526

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng W, Dignon GL, Jovic N, Xu X, Regy RM, Fawzi NL, Kim YC, Best RB, Mittal J (2020) Molecular details of protein condensates probed by microsecond long atomistic simulations. J Phys Chem B 124:11671–11679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ermoshkin AV, Olvera de la Cruz M (2003) A modified random phase approximation of polyelectrolyte solutions. Macromolecules 36:7824–7832

    Article  CAS  Google Scholar 

  17. Lin Y-H, Forman-Kay JD, Chan HS (2016) Sequence-specific polyampholyte phase separation in membraneless organelles. Phys Rev Lett 117:178101

    Article  PubMed  Google Scholar 

  18. Lin Y-H, Song J, Forman-Kay JD, Chan HS (2017) Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins. J Mol Liq 228:176–193

    Article  CAS  Google Scholar 

  19. Lin Y-H, Chan HS (2017) Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys J 112:2043–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amin AN, Lin Y-H, Das S, Chan HS (2020) Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins. J Phys Chem B 124:6709–6720

    Article  CAS  PubMed  Google Scholar 

  21. Dignon GL, Zheng W, Best RB, Kim YC, Mittal J (2018) Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc Natl Acad Sci USA 115:9929–9934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Das RK, Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci USA 110:13392–13397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sawle L, Ghosh K (2015) A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J Chem Phys 143:085101

    Article  PubMed  Google Scholar 

  24. Lin Y-H, Brady JP, Forman-Kay JD, Chan HS (2017) Charge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. New J Phys 19:115003

    Article  Google Scholar 

  25. Pal T, Wessén J, Das S, Chan HS (2021) Subcompartmentalization of polyampholyte species in organelle-like condensates is promoted by charge-pattern mismatch and strong excluded-volume interaction. Phys Rev E 103:042406

    Article  CAS  PubMed  Google Scholar 

  26. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP (2021) The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol 22:165–182

    Article  CAS  PubMed  Google Scholar 

  28. Lin Y-H, Brady JP, Chan HS, Ghosh K (2020) A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes. J Chem Phys 152:045102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Das S, Eisen A, Lin Y-H, Chan HS (2018) A lattice model of charge-pattern-dependent polyampholyte phase separation. J Phys Chem B 122:5418–5431

    Article  CAS  PubMed  Google Scholar 

  30. Das S, Amin AN, Lin Y-H, Chan HS (2018) Coarse-grained residue-based models of disordered protein condensates: Utility and limitations of simple charge pattern parameters. Phys Chem Chem Phys 20:28558–28574

    Article  CAS  PubMed  Google Scholar 

  31. Fredrickson GH (2006) The Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press, New York, NY.

    Google Scholar 

  32. McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea J-E (2019) Complete phase diagram for liquid-liquid phase separation of intrinsically disordered proteins. J Phys Chem Lett 10:1644–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Danielsen SPO, McCarty J, Shea J-E, Delaney KT, Fredrickson GH (2019) Molecular design of self-coacervation phenomena in block polyampholytes. Proc Natl Acad Sci USA 116:8224–8232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Das S, Lin Y-H, Vernon RM, Forman-Kay JD, Chan HS (2020) Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proc Natl Acad Sci U S A 117:28795–28805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wessén J, Pal T, Das S, Lin Y-H, Chan HS (2021) A simple explicit-solvent model of polyampholyte phase behaviors and its ramifications for dielectric effects in biomolecular condensates. J Phys Chem B 125:4337–4358

    Google Scholar 

  36. Dignon GL, Zheng W, Kim YC, Best RB, Mittal J (2018) Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput Biol 14:e1005941

    Article  PubMed  PubMed Central  Google Scholar 

  37. Silmore KS, Howard MP, Panagiotopoulos AZ (2017) Vapour–liquid phase equilibrium and surface tension of fully flexible Lennard–Jones chains. Mol Phys 115:320–327

    Article  CAS  Google Scholar 

  38. Schuster BS, Dignon GL, Tang WS, Kelley FM, Ranganath AK, Jahnke CN, Simplins AG, Regy RM, Hammer DA, Good MC, Mittal J (2020) Identifying sequence perturbations to an intrinsically disordered protein that determine its phase separation behavior. Proc Natl Acad Sci USA 117:11421–11431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD (2018) Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7:e31486

    Article  PubMed  PubMed Central  Google Scholar 

  40. Song J, Ng SC, Tompa P, Lee KAW, Chan HS (2013) Polycation-π interactions are a driving force for molecular recognition by an intrinsically disordered oncoprotein family. PLoS Comput Biol 9:e1003239

    Google Scholar 

  41. Chen T, Song J, Chan HS (2015) Theoretical perspectives on nonnative interactions and intrinsic disorder in protein folding and binding. Curr Opin Struct Biol 30:32–42

    Article  CAS  PubMed  Google Scholar 

  42. Choi J-M, Dar F, Pappu RV (2019) LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol 15:e1007028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nilsson D, Irbäck A (2020) Finite-size scaling analysis of protein droplet formation. Phys Rev E 101:022413

    Article  CAS  PubMed  Google Scholar 

  44. Robichaud NAS, Saika-Voivod I, Wallin S (2019) Phase behavior of blocky charge lattice polymers: Crystals, liquids, sheets, filaments, and clusters. Phys Rev E 100:052404

    Article  CAS  PubMed  Google Scholar 

  45. Nguemaha V, Zhou H-X (2018) Liquid-liquid phase separation of patchy particles illuminates diverse effects of regulatory components on protein droplet formation. Sci Rep 8:6728

    Article  PubMed  PubMed Central  Google Scholar 

  46. Espinosa JR, Joseph JA, Sanchez-Burgos I, Garaizar A, Frenkel D, Collepardo-Guevara R (2020) Liquid network connectivity regulates the stability and composition of biomolecular condensates with many components. Proc Natl Acad Sci USA 117:13238–13247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sing CE (2017) Development of the modern theory of polymeric complex coacervation. Adv Coll Interface Sci 239:2–16

    Article  CAS  Google Scholar 

  48. Sing CE, Perry SL (2020) Recent progress in the science of complex coacervation. Soft Matter 16:2885–2914

    Article  CAS  PubMed  Google Scholar 

  49. Semenov AN, Rubinstein M (1998) Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31:1373–1385

    Article  CAS  Google Scholar 

  50. Bawendi MG, Freed KF, Mohanty U (1987) A lattice field theory for polymer systems with nearest-neighbor interaction energies. J Chem Phys 87:5534–5540

    Article  CAS  Google Scholar 

  51. Baker D, Chan HS, Dill KA (1993) Coordinate-space formulation of polymer lattice cluster theory. J Chem Phys 98:9951–9962

    Article  CAS  Google Scholar 

  52. Wertheim MS (1986) Fluids with highly directional attractive forces. IV. Equilibrium polymerization. J Stat Phys 42:477–492

    Google Scholar 

  53. Kastelic M, Kalyuzhnyi YV, Vlachy V (2016) Modeling phase transitions in mixtures of β-γ lens crystallins. Soft Matter 12:7289–7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shen K, Wang Z-G (2017) Electrostatic correlations and the polyelectrolyte self energy. J Chem Phys 146:084901

    Article  PubMed  Google Scholar 

  55. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  56. Fletcher R (1987) Practical Methods of Optimization. John Wiley & Sons Ltd., New York, NY.

    Google Scholar 

  57. Cinar H, Oliva R, Lin Y-H, Chen X, Zhang M, Chan HS, Winter R (2020) Pressure sensitivity of SynGAP/PSD-95 condensates as a model for postsynaptic densities and its biophysical and neurological ramifications. Chem Eur J 26:11024–11031.

    Article  CAS  PubMed  Google Scholar 

  58. Lin Y-H, Wu H, Jia B, Zhang M, Chan HS (2022) Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding. Biophys J 121:157–171

    Google Scholar 

  59. Dill KA, Alonso DOV, Hutchinson K (1989) Thermal stabilities of globular proteins. Biochemistry 28:5439–5449

    Article  CAS  PubMed  Google Scholar 

  60. Dignon GL, Zheng W, Kim YC, Mittal J (2019) Temperature-controlled liquid-liquid phase separation of disordered proteins. ACS Cent Sci 5:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jacobs WM, Frenkel D (2017) Phase transitions in biological systems with many components. Biophys J 112:683–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593

    Article  Google Scholar 

  63. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes: The Art of Scientific Computing (3rd ed). Cambridge University Press, New York, NY, p 509 [Section 10.7. Direction set (Powell’s) methods in multidimensions]

    Google Scholar 

  64. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16:1190–1208

    Article  Google Scholar 

  65. Kraft D (1988) A Software Package for Sequential Quadratic Programming. Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Forschungsbericht (DFVLR Report). Wiss. Berichtswesen d. DFVLR, Köln (Cologne), Germany.

    Google Scholar 

  66. Lin Y, McCarty J, Rauch JN, Delaney KT, Kosik KS, Fredrickson GH, Shea J-E, Han S (2019) Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 8:e42571

    Article  PubMed  PubMed Central  Google Scholar 

  67. Matsen MW (2006) Self-consistent field theory and its applications. In: Gompper G, Schick M (eds) Soft Matter: Polymer Melts and Mixtures. Wiley-VCH, Weinheim, Germany, pp 87–178

    Google Scholar 

  68. Wang Z-G (2010) Fluctuation in electrolyte solutions: The self energy. Phys Rev E 81:021501

    Article  Google Scholar 

  69. Edwards SF (1965) The statistical mechanics of polymers with excluded volume. Proc Phys Soc 85:613–624

    Article  CAS  Google Scholar 

  70. Fredrickson GH, Ganesan V, Drolet F (2002) Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35:16–39

    Article  CAS  Google Scholar 

  71. Parisi G (1983) On complex probabilities. Phys Lett B 131:393–395

    Article  Google Scholar 

  72. Klauder JR (1983) A Langevin approach to fermion and quantum spin correlation functions. J Phys A: Math Gen 16:L317–L319

    Article  Google Scholar 

  73. Parisi G, Wu Y-S (1981) Perturbation theory without gauge fixing. Sci Sin 24:483–496

    Google Scholar 

  74. Chan HS, Halpern MB (1986) New ghost-free infrared-soft gauges. Phys Rev D 33:540–547

    Article  CAS  Google Scholar 

  75. Damgaard PH, Hüffek H (1987) Stochastic quantization. Phys Rep 152:227–398

    Article  CAS  Google Scholar 

  76. Lennon EM, Mohler GO, Ceniceros HD, García-Cervera CJ, Fredrickson GH (2008) Numerical solutions of the complex Langevin equations in polymer field theory. Multiscale Model Sim 6:1347–1370

    Article  CAS  Google Scholar 

  77. Kardar M (2007) Statistical Physics of Particles. Cambridge University Press, New York, NY

    Book  Google Scholar 

  78. Villet MC, Fredrickson GH (2014) Efficient field-theoretic simulation of polymer solutions. J Chem Phys 141:224115

    Article  PubMed  Google Scholar 

  79. Riggleman RA, Fredrickson GH (2010) Field-theoretic simulations in the Gibbs ensemble. J Chem Phys 132:024104

    Google Scholar 

  80. Itzykson C, Zuber J-B (1980) Quantum Field Theory. McGraw-Hill Inc., New York, NY

    Google Scholar 

  81. Panagiotopoulos AZ (1992) Direct determination of fluid phase equilibria by simulation in the Gibbs ensemble: A review. Mol Simul 9:1–23

    Article  Google Scholar 

  82. Binder K (1985) The Monte Carlo method for the study of phase transitions: A review of some recent progress. J Comput Phys 59:1–55

    Article  CAS  Google Scholar 

  83. Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61:813–826

    Article  CAS  Google Scholar 

  84. Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988) Phase equilibria by simulation in the Gibbs ensemble. Mol Phys 63:527–545

    Article  CAS  Google Scholar 

  85. Panagiotopoulos AZ (2000) Monte Carlo methods for phase equilibria of fluids. J Phys Condens Matter 12:R25–R52.

    Article  CAS  Google Scholar 

  86. Hazra MK, Levy Y (2020) Charge pattern affects the structure and dynamics of polyampholyte condensates. Phys Chem Chem Phys 22:19368–19375.

    Article  CAS  PubMed  Google Scholar 

  87. Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH, Mittal J, Fawzi NL (2019) Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26:637–648

    Google Scholar 

  88. Regy RM, Dignon GL, Zheng W, Kim YC, Mittal J (2020) Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations. Nucl Acids Res 48:12593–12603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zheng W, Dignon GL, Jovic N, Xu X, Regy RM, Fawzi NL, Kim YC, Best, RB, Mittal J (2020) Molecular details of protein condensates probed by microsecond long atomistic simulations. J Phys Chem B 124:11671–11679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anderson JA, Glaser J Glotzer SC (2020) HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput Mater Sci 173:109363

    Article  CAS  Google Scholar 

  91. Glaser J, Nguyen TD, Anderson JA, Lui P, Spiga F, Millan JA, Morse DC, Glotzer SC (2015) Strong scaling of general-purpose molecular dynamics simulations on GPUs. Comput Phys Comm 192:97–107

    Article  CAS  Google Scholar 

  92. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1–19

    Article  CAS  Google Scholar 

  93. Regy RM, Zheng W, Mittal J (2021) Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation. Methods Enzymol 646:1–17

    Article  CAS  Google Scholar 

  94. Kapcha LH, Rossky PJ (2014) A simple atomic-level hydrophobicity scale reveals protein interfacial structure. J Mol Biol 426:484–498

    Article  CAS  PubMed  Google Scholar 

  95. Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol 256:623–644

    Article  CAS  PubMed  Google Scholar 

  96. Kim YC, Hummer G (2008) Coarse-grained models for simulations of multiprotein complexes: Application to ubiquitin binding. J Mol Biol 375:1416–1433

    Article  CAS  PubMed  Google Scholar 

  97. Regy RM, Thompson J, Kim YC, Mittal J (2021) Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci 30:1371–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dannenhoffer-Lafage T, Best RB (2021) A data-driven hydrophobicity scale for predicting liquid-liquid phase separation of proteins. J Phys Chem B 125:4046–4056.

    Article  CAS  PubMed  Google Scholar 

  99. LeBard DN, Levine BG, Mertmann P, Barr SA, Jusufi A, Sanders S, Klein ML, Panagiotopoulos AZ (2012) Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units. Soft Matter 8:2385–2397

    Article  CAS  Google Scholar 

  100. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: A package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  PubMed  Google Scholar 

  101. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  102. Tuckerman ME, Alejandre J, López-Rendón R, Jochim AL, Martyna GJ (2006) A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble. J Phys A: Math Gen 39:5629–5651

    Article  CAS  Google Scholar 

  103. Rowlinson JS, Widom B (2002) Molecular Theory of Capillarity. Dover Publications, Mineola, NY

    Google Scholar 

  104. Humphrey W, Dalke A, Schulten K (1996) VMD - Visual Molecular Dynamics. J Molec Graphics 14:33–38

    Article  CAS  Google Scholar 

  105. Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K (2008) Using VMD: an introductory tutorial. Curr Protoc Bioinform 24:5.7.1-5.7.48

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Canadian Institutes of Health Research grant NJT-155930 and Natural Sciences and Engineering Research Council of Canada grant RGPIN-2018-04351 as well as computational resources provided generously by Compute/Calcul Canada to H.S.C.

Y.-H.L., J.W., and T.P. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hue Sun Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, YH., Wessén, J., Pal, T., Das, S., Chan, H.S. (2023). Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins. In: Zhou, HX., Spille, JH., Banerjee, P.R. (eds) Phase-Separated Biomolecular Condensates. Methods in Molecular Biology, vol 2563. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2663-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2663-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2662-7

  • Online ISBN: 978-1-0716-2663-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics