Skip to main content

Now that We Got There, What Next?

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

  • 1070 Accesses

Abstract

As seen in the protocols in this book, the opportunities to pursue work at the cellular and molecular work in salamanders have considerably broadened over the last years. The availability of genomic information and genome editing, and the possibility to image tissues live and other methods enhance the spectrum of biological questions accessible to all researchers. Here I provide a personal perspective on what I consider exciting future questions open for investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schloissnig S, Kawaguchi A, Nowoshilow S, Falcon F, Otsuki L, Tardivo P, Timoshevskaya N, Keinath MC, Smith JJ, Voss SR et al (2021) The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci. Proc Natl Acad Sci U S A 118(5):e2017176118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stewart R, Rascon CA, Tian S, Nie J, Barry C, Chu LF, Ardalani H, Wagner RJ, Probasco MD, Bolin JM et al (2013) Comparative RNA-seq analysis in the unsequenced axolotl: the oncogene burst highlights early gene expression in the blastema. PLoS Comput Biol 9:e1002936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG et al (2017) A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18:762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang P, Nelson JD, Leng N, Collins M, Swanson S, Dewey CN, Thomson JA, Stewart R (2017) Analysis of embryonic development in the unsequenced axolotl: waves of transcriptomic upheaval and stability. Dev Biol 426:143–154

    Article  CAS  PubMed  Google Scholar 

  5. Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55

    Article  CAS  PubMed  Google Scholar 

  6. Leigh ND, Dunlap GS, Johnson K, Mariano R, Oshiro R, Wong AY, Bryant DM, Miller BM, Ratner A, Chen A et al (2018) Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat Commun 9:5153

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, Gac-Santel M, Nowoshilow S, Kageyama J, Khattak S et al (2018) Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362:eaaq0681

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rodgers AK, Smith JJ, Voss SR (2020) Identification of immune and non-immune cells in regenerating axolotl limbs by single-cell sequencing. Exp Cell Res 394:112149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin T, Fan CM, Wang TZ, Sun H, Zhao YY, Yan RJ, Yang L, Shen WL, Lin JX, Bunpetch V et al (2021) Single-cell RNA-seq reveals novel mitochondria-related musculoskeletal cell populations during adult axolotl limb regeneration process. Cell Death Differ 28:1110–1125

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Wei X, Zhou L, Zhang W, Wang C, Guo Y, Li D, Chen J, Liu T, Zhang Y et al (2021) Dynamic cell transition and immune response landscapes of axolotl limb regeneration revealed by single-cell analysis. Protein Cell 12:57–66

    Article  CAS  PubMed  Google Scholar 

  11. Fei JF, Schuez M, Tazaki A, Taniguchi Y, Roensch K, Tanaka EM (2014) CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Reports 3:444–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flowers GP, Timberlake AT, Mclean KC, Monaghan JR, Crews CM (2014) Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 141(10):2165–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fei JF, Schuez M, Knapp D, Taniguchi Y, Drechsel DN, Tanaka EM (2017) Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration. Proc Natl Acad Sci U S A 114:12501–12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Echeverri K, Tanaka EM (2003) Electroporation as a tool to study in vivo spinal cord regeneration. Dev Dyn 226:418–425

    Article  CAS  PubMed  Google Scholar 

  15. Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218:199–205

    Article  CAS  PubMed  Google Scholar 

  16. Whited JL, Tsai SL, Beier KT, White JN, Piekarski N, Hanken J, Cepko CL, Tabin CJ (2013) Pseudotyped retroviruses for infecting axolotl in vivo and in vitro. Development 140:1137–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khattak S, Sandoval-Guzman T, Stanke N, Protze S, Tanaka EM, Lindemann D (2013) Foamy virus for efficient gene transfer in regeneration studies. BMC Dev Biol 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oliveira CR, Lemaitre R, Murawala P, Tazaki A, Drechsel DN, Tanaka EM (2018) Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration. Dev Biol 433:262–275

    Article  CAS  PubMed  Google Scholar 

  19. Wei X, Li H, Guo Y, Zhao X, Liu Y, Zou X, Zhou L, Yuan Y, Qin Y, Mao C et al (2021) An ATAC-seq dataset uncovers the regulatory landscape during axolotl limb regeneration. Front Cell Dev Biol 9:651145

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K (2019) AP-1(cFos/JunB)/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun Biol 2:91

    Article  PubMed  PubMed Central  Google Scholar 

  21. Beisaw A, Kuenne C, Guenther S, Dallmann J, Wu CC, Bentsen M, Looso M, Stainier DYR (2020) AP-1 contributes to chromatin accessibility to promote sarcomere disassembly and cardiomyocyte protrusion during zebrafish heart regeneration. Circ Res 126:1760–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee HJ, Hou Y, Chen Y, Dailey ZZ, Riddihough A, Jang HS, Wang T, Johnson SL (2020) Regenerating zebrafish fin epigenome is characterized by stable lineage-specific DNA methylation and dynamic chromatin accessibility. Genome Biol 21:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang W, Hu CK, Zeng A, Alegre D, Hu D, Gotting K, Ortega Granillo A, Wang Y, Robb S, Schnittker R et al (2020) Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates. Science 369(6508):eaaz3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu HY, Zhou YM, Liao ZQ, Zhong JW, Liu YB, Zhao H, Liang CQ, Huang RJ, Park KS, Feng SS et al (2021) Fosl1 is vital to heart regeneration upon apex resection in adult Xenopus tropicalis. NPJ Regen Med 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  25. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun C, Lopez Arriaza JR, Mueller RL (2012) Slow DNA loss in the gigantic genomes of salamanders. Genome Biol Evol 4:1340–1348

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A et al (2021) Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 590:284–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, Fan G, Hu J, Xu W, Bi X et al (2021) African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184(1362–1376):e1318

    Google Scholar 

  29. Currie JD, Kawaguchi A, Traspas RM, Schuez M, Chara O, Tanaka EM (2016) Live imaging of axolotl digit regeneration reveals spatiotemporal choreography of diverse connective tissue progenitor pools. Dev Cell 39:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar A, Nevill G, Brockes JP, Forge A (2010) A comparative study of gland cells implicated in the nerve dependence of salamander limb regeneration. J Anat 217:16–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farkas JE, Freitas PD, Bryant DM, Whited JL, Monaghan JR (2016) Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration. Development 143:2724–2731

    CAS  PubMed  Google Scholar 

  32. Tsai SL, Baselga-Garriga C, Melton DA (2020) Midkine is a dual regulator of wound epidermis development and inflammation during the initiation of limb regeneration. Elife 9:e50765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Monaghan JR, Maden M (2012) Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev Biol 368:63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duerr TJ, Jeon EK, Wells KM, Villanueva A, Seifert AW, McCusker DD, Monaghan JR (2021) A constitutively expressed fluorescence ubiquitin cell cycle indicator (FUCCI) in axolotls for studying tissue regeneration. BioRxv. https://doi.org/10.1101/2021.03.30.437716

  35. Cura Costa E, Otsuki L, Rodrigo Albors A, Tanaka EM, Chara O (2021) Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration. Elife 10:e55665

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Denans N, Liu Y, Zhulyn O, Rosenblatt HD, Wernig M, Barna M (2021) Optogenetic manipulation of cellular communication using engineered myosin motors. Nat Cell Biol 23:198–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fukazawa T, Naora Y, Kunieda T, Kubo T (2009) Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development 136:2323–2327

    Article  CAS  PubMed  Google Scholar 

  38. Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110:9415–9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsujioka H, Kunieda T, Katou Y, Shirahige K, Fukazawa T, Kubo T (2017) Interleukin-11 induces and maintains progenitors of different cell lineages during Xenopus tadpole tail regeneration. Nat Commun 8:495

    Article  PubMed  PubMed Central  Google Scholar 

  40. Debuque RJ, Nowoshilow S, Chan KE, Rosenthal NA, Godwin JW (2021) Distinct toll-like receptor signaling in the salamander response to tissue damage. Dev Dyn 251(6):988–1003

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hui SP, Sheng DZ, Sugimoto K, Gonzalez-Rajal A, Nakagawa S, Hesselson D, Kikuchi K (2017) Zebrafish regulatory T cells mediate organ-specific regenerative programs. Dev Cell 43:659–672, e655

    Article  CAS  PubMed  Google Scholar 

  42. Wells-Enright KM, Kelley K, Baumel M, Vieira WA, McCusker CD (2021) Neurotrophic control of size regulation during axolotl limb regeneration. BioRxv. https://doi.org/10.1101/2021.04.27.441633

  43. Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187

    Article  CAS  PubMed  Google Scholar 

  44. Elewa A, Wang H, Talavera-Lopez C, Joven A, Brito G, Kumar A, Hameed LS, Penrad-Mobayed M, Yao Z, Zamani N et al (2017) Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun 8:2286

    Article  PubMed  PubMed Central  Google Scholar 

  45. Arenas Gomez CM, Gomez Molina A, Zapata JD, Delgado JP (2017) Limb regeneration in a direct-developing terrestrial salamander, Bolitoglossa ramosi (Caudata: Plethodontidae): limb regeneration in plethodontid salamanders. Regeneration (Oxf) 4:227–235

    Article  Google Scholar 

  46. Sun C, Mueller RL (2014) Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders. Genome Biol Evol 6:1818–1829

    Article  PubMed  PubMed Central  Google Scholar 

  47. Palacios-Martinez J, Caballero-Perez J, Espinal-Centeno A, Marquez-Chavoya G, Lomeli H, Salas-Vidal E, Schnabel D, Chimal-Monroy J, Cruz-Ramirez A (2020) Multi-organ transcriptomic landscape of Ambystoma velasci metamorphosis. Dev Biol 466:22–35

    Article  PubMed  Google Scholar 

  48. Dwaraka VB, Smith JJ, Woodcock MR, Voss SR (2019) Comparative transcriptomics of limb regeneration: identification of conserved expression changes among three species of Ambystoma. Genomics 111:1216–1225

    Article  CAS  PubMed  Google Scholar 

  49. Tracy KE, Kiemnec-Tyburczy KM, DeWoody JA, Parra-Olea G, Zamudio KR (2015) Positive selection drives the evolution of a major histocompatibility complex gene in an endangered Mexican salamander species complex. Immunogenetics 67:323–335

    Article  CAS  PubMed  Google Scholar 

  50. Diaz Quiroz JF, Tsai E, Coyle M, Sehm T, Echeverri K (2014) Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 7:601–611

    PubMed  PubMed Central  Google Scholar 

  51. Cook AB, Seifert AW (2016) Beryllium nitrate inhibits fibroblast migration to disrupt epimorphic regeneration. Development 143:3491–3505

    CAS  PubMed  Google Scholar 

  52. Hutchison C, Pilote M, Roy S (2007) The axolotl limb: a model for bone development, regeneration and fracture healing. Bone 40:45–56

    Article  PubMed  Google Scholar 

  53. Rozenblit F, Gollisch T (2020) What the salamander eye has been telling the vision scientist’s brain. Semin Cell Dev Biol 106:61–71

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ryczko D, Simon A, Ijspeert AJ (2020) Walking with salamanders: from molecules to biorobotics. Trends Neurosci 43:916–930

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elly M. Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tanaka, E.M. (2023). Now that We Got There, What Next?. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics