Skip to main content

Cell Dissociation Techniques in Salamanders

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

  • 1029 Accesses

Abstract

Cell dissociation is an important technique for the study of tissue phenotypes. The method chosen to harvest cells from solid tissues profoundly influences the types of cells recovered. Methodology also shapes any biases that are introduced that can act upon cell surface protein phenotypes or gene expression. Here we describe examples of cell surface phenotypic changes and typical yields, under 4 different isolation conditions (enzymatic/non-enzymatic), using the axolotl spleen, and the regenerating limb. We describe simple methods for evaluating the liberation of viable cells and the downstream characterization of cell diversity using a live-cell flow cytometry approach. Of note, the cellular composition of dissociated cells and surface antigen detection vary with each condition. TrypLE and “no enzyme” protocols give the highest surface marker expression, but poor liberation of non-immune cells in the blastema. Liberase-DH and Liberase-TL have alternative neutral proteases and both give acceptable dissociation of diverse cell types in the blastema. Liberase-TL provides the highest yield of all cell sizes and a larger non-immune fraction. Matching dissociation times between limb blastemas and spleens, we demonstrate the effect of “over-digestion” in soft tissues. In the spleen, the Liberase enzyme cocktails produced the lowest yields, worst viability, and the greatest loss of immune cell surface markers, when compared with non-enzymatic and TrypLE dissociation. These examples provide a template for optimizing protocols for individual tissues while achieving the balance between cell recovery and the mitigation of cellular changes appropriate for downstream applications such as single-cell RNA sequencing and flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237–252. https://doi.org/10.1146/annurev.bi.59.070190.001321

    Article  CAS  PubMed  Google Scholar 

  2. Kumar A, Godwin JW (2010) Preparation and culture of limb blastema stem cells from regenerating larval and adult salamanders. Cold Spring Harb Protoc 2010(1):pdb.prot5367-pdb.prot5367. https://doi.org/10.1101/pdb.prot5367

    Article  Google Scholar 

  3. Aronowitz JA, Lockhart RA, Hakakian CS (2015) Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus 4:713. https://doi.org/10.1186/s40064-015-1509-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schneeberger EE, Lynch RD (1992) Structure, function, and regulation of cellular tight junctions. Am J Phys 262(6 Pt 1):L647–L661. https://doi.org/10.1152/ajplung.1992.262.6.L647

    Article  CAS  Google Scholar 

  5. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123(Pt 24):4195–4200. https://doi.org/10.1242/jcs.023820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Halper J, Kjaer M (2014) Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol 802:31–47. https://doi.org/10.1007/978-94-007-7893-1_3

    Article  CAS  PubMed  Google Scholar 

  7. Loganathan G, Balamurugan AN, Venugopal S (2020) Human pancreatic tissue dissociation enzymes for islet isolation: advances and clinical perspectives. Diabetes Metab Syndr 14(2):159–166. https://doi.org/10.1016/j.dsx.2020.01.010

    Article  PubMed  Google Scholar 

  8. Rawlings ND, Salvesen G (2013) Handbook of proteolytic enzymes. 3rd ed, Elsevier/AP, Amsterdam

    Google Scholar 

  9. Autengruber A, Gereke M, Hansen G, Hennig C, Bruder D (2012) Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur J Microbiol Immunol (Bp) 2(2):112–120. https://doi.org/10.1556/EuJMI.2.2012.2.3

    Article  CAS  Google Scholar 

  10. Stremnitzer C, Manzano-Szalai K, Willensdorfer A, Starkl P, Pieper M, Konig P, Mildner M, Tschachler E, Reichart U, Jensen-Jarolim E (2015) Papain degrades tight junction proteins of human keratinocytes in vitro and sensitizes C57BL/6 mice via the skin independent of its enzymatic activity or TLR4 activation. J Invest Dermatol 135(7):1790–1800. https://doi.org/10.1038/jid.2015.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Price PA (1975) The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease. J Biol Chem 250(6):1981–1986

    Article  CAS  Google Scholar 

  12. Dolmans MM, Michaux N, Camboni A, Martinez-Madrid B, Van Langendonckt A, Nottola SA, Donnez J (2006) Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod 21(2):413–420. https://doi.org/10.1093/humrep/dei320

    Article  CAS  PubMed  Google Scholar 

  13. Tsuji K, Ojima M, Otabe K, Horie M, Koga H, Sekiya I, Muneta T (2017) Effects of different cell-detaching methods on the viability and cell surface antigen expression of synovial mesenchymal stem cells. Cell Transplant 26(6):1089–1102. https://doi.org/10.3727/096368917X694831

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dono K, Gotoh M, Monden M, Kanai T, Fukuzaki T, Mori T (1994) Low temperature collagenase digestion for islet isolation from 48-hour cold-preserved rat pancreas. Transplantation 57(1):22–26. https://doi.org/10.1097/00007890-199401000-00005

    Article  CAS  PubMed  Google Scholar 

  15. Hidvegi NC, Sales KM, Izadi D, Ong J, Kellam P, Eastwood D, Butler PE (2006) A low temperature method of isolating normal human articular chondrocytes. Osteoarthr Cartil 14(1):89–93. https://doi.org/10.1016/j.joca.2005.08.007

    Article  CAS  Google Scholar 

  16. Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40(6):693–696. https://doi.org/10.1046/j.1537-2995.2000.40060693.x

    Article  CAS  PubMed  Google Scholar 

  17. Debuque RJ, Godwin JW (2015) Methods for axolotl blood collection, intravenous injection, and efficient leukocyte isolation from peripheral blood and the regenerating limb. Methods Mol Biol 1290(Chapter 17):205–226. https://doi.org/10.1007/978-1-4939-2495-0_17

    Article  PubMed  Google Scholar 

  18. Sobkow L, Epperlein HH, Herklotz S, Straube WL, Tanaka EM (2006) A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol 290(2):386–397. https://doi.org/10.1016/j.ydbio.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  19. Kerfourn F, Guillet F, Charlemagne J, Tournefier A (1992) T-cell-specific membrane antigens in the Mexican axolotl (urodele amphibian). Dev Immunol 2(3):237–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

“Research reported in this publication was supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant numbers P20GM103423 and P20GM104318.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Godwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, G., Dastagir, N., Beal, Z., Hart, A., Godwin, J. (2023). Cell Dissociation Techniques in Salamanders. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics