Skip to main content

Analysis of Golgi Morphology Using Immunofluorescence and CellProfiler Software

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

Abstract

The architecture of the Golgi apparatus in mammalian cells changes dynamically in response to internal and external cues and may be permanently altered in disease states. Here, we present a method to quantify changes in Golgi morphology using immunofluorescence and confocal microscopy followed by CellProfiler software analysis. This method will assist researchers in evaluating alterations in the Golgi complex morphology of cultured cells under a variety of different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klumperman J (2011) Architecture of the mammalian Golgi. Cold Spring Harb Perspect Biol 3:a005181

    Article  Google Scholar 

  2. Makhoul C, Gosavi P, Gleeson PA (2018) The Golgi architecture and cell sensing. Biochem Soc Trans 46:1063–1072

    Article  CAS  Google Scholar 

  3. Prydz K, Lupashin V, Wang Y, Saraste J (2020) Editorial: Golgi dynamics in physiological and pathological conditions. Front Cell Dev Biol 8:7

    Article  Google Scholar 

  4. Chia J, Goh G, Racine V, Ng S, Kumar P, Bard F (2012) RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Mol Syst Biol 8:629

    Article  Google Scholar 

  5. Wei JH, Seemann J (2017) Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 47:43–51

    Article  CAS  Google Scholar 

  6. Farber-Katz SE, Dippold HC, Buschman MD, Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM et al (2014) DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 156:413–427

    Article  CAS  Google Scholar 

  7. Ireland S, Ramnarayanan S, Fu M, Zhang X, Zhang J, Li J, Emebo D, Wang Y (2020) Cytosolic Ca(2+) modulates Golgi structure through PKCalpha-mediated GRASP55 phosphorylation. iScience 23:100952

    Article  CAS  Google Scholar 

  8. Kellokumpu S, Sormunen R, Kellokumpu I (2002) Abnormal glycosylation and altered Golgi structure in colorectal cancer: dependence on intra-Golgi pH. FEBS Lett 516:217–224

    Article  CAS  Google Scholar 

  9. Petrosyan A (2015) Onco-Golgi: is fragmentation a gate to cancer progression? Biochem Mol Biol J 1(1):16

    Article  Google Scholar 

  10. Joshi G, Bekier M, Wang Y (2015) Golgi fragmentation in Alzheimer’s disease. Front Neurosci 9:340

    Article  Google Scholar 

  11. Ahat E, Li J, Wang Y (2019) New insights into the Golgi stacking proteins. Front Cell Dev Biol 7:131

    Article  Google Scholar 

  12. Bekier ME 2nd, Wang L, Li J, Huang H, Tang D, Zhang X, Wang Y (2017) Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Mol Biol Cell 28:2833–2842

    Article  CAS  Google Scholar 

  13. Eisenberg-Lerner A, Benyair R, Hizkiahou N, Nudel N, Maor R, Kramer MP, Shmueli MD, Zigdon I, Cherniavsky Lev M, Ulman A et al (2020) Golgi organization is regulated by proteasomal degradation. Nat Commun 11:409

    Article  CAS  Google Scholar 

  14. Ferguson S, Steyer AM, Mayhew TM, Schwab Y, Lucocq JM (2017) Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput. Histochem Cell Biol 147:653–669

    Article  CAS  Google Scholar 

  15. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100

    Article  Google Scholar 

  16. Hennig H, Rees P, Blasi T, Kamentsky L, Hung J, Dao D, Carpenter AE, Filby A (2017) An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods 112:201–210

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Sofia Geroyska for her critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mejia, I., Chen, YC., Díaz, B. (2023). Analysis of Golgi Morphology Using Immunofluorescence and CellProfiler Software. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_46

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics