Skip to main content

Super-Resolution Live Imaging of Cargo Traffic Through the Golgi Apparatus in Mammalian Cells

  • Protocol
  • First Online:
Golgi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2557))

Abstract

Super-resolution confocal live imaging microscopy (SCLIM) we developed provides high-speed, high-resolution, three- and four-dimensional, and multicolor simultaneous imaging. Using this technology, we are now able to observe the fine details of various dynamic events going on in living cells, such as membrane traffic and organelle dynamics. The retention using selective hooks (RUSH) system is a powerful tool to control synchronous release of natural cargo proteins of interest from the endoplasmic reticulum in mammalian cells. In this chapter, we describe a method for visualizing secretory cargo traffic within and around the Golgi apparatus in HeLa cells using SCLIM in combination with the RUSH assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 11 February 2023

    The original version of the book was inadvertently published without incorporating the author’s proof corrections mentioned below. The chapters have now been corrected and approved by the author.

References

  1. Sigal YM, Zhou R, Zhuang X (2018) Visualizing and discovering cellular structures with super-resolution microscopy. Science 361:880–887

    Article  CAS  Google Scholar 

  2. Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016

    Article  CAS  Google Scholar 

  3. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    Article  CAS  Google Scholar 

  4. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006) Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010

    Article  CAS  Google Scholar 

  5. Ito Y, Uemura T, Shoda K, Fujimoto M, Ueda T, Nakano A (2012) cis-Golgi proteins accumulate near the ER exit sites and act as the scaffold for Golgi regeneration after brefeldin A treatment in tobacco BY-2 cells. Mol Biol Cell 23:3203–3214

    Article  CAS  Google Scholar 

  6. Ishii A, Kurokawa K, Hotta M, Yoshizaki S, Kurita M, Koyama A, Nakano A, Kimura Y (2019) Role of Atg8 in the regulation of vacuolar membrane invagination. Sci Rep 9:14828

    Article  Google Scholar 

  7. Kurokawa K, Osakada H, Kojidani T, Waga M, Suda Y, Asakawa H, Haraguchi T, Nakano A (2019) Visualization of secretory cargo transport within the Golgi apparatus. J Cell Biol 218:1602–1618

    Article  CAS  Google Scholar 

  8. Maeda M, Kurokawa K, Katada T, Nakano A, Saito K (2019) COPII proteins exhibit distinct subdomains within each ER exit site for executing their functions. Sci Rep 9:7346

    Article  Google Scholar 

  9. Tojima T, Suda Y, Ishii M, Kurokawa K, Nakano A (2019) Spatiotemporal dissection of the trans-Golgi network in budding yeast. J Cell Sci 132(jcs231159)

    Google Scholar 

  10. Fujii S, Kurokawa K, Inaba R, Hiramatsu N, Tago T, Nakamura Y, Nakano A, Satoh T, Satoh AK (2020) Recycling endosomes attach to the trans-side of Golgi stacks in Drosophila and mammalian cells. J Cell Sci 133(jcs236935)

    Google Scholar 

  11. Fujii S, Kurokawa K, Tago T, Inaba R, Takiguchi A, Nakano A, Satoh T, Satoh AK (2021) Sec71 separates Golgi stacks in Drosophila S2 cells. J Cell Sci 133(jcs245571)

    Google Scholar 

  12. Rodriguez-Gallardo S, Kurokawa K, Sabido-Bozo S, Cortes-Gomez A, Ikeda A, Zoni V, Aguilera-Romero A, Perez-Linero AM, Lopez S, Waga M, Araki M, Nakano M, Riezman H, Funato K, Vanni S, Nakano A, Muñiz M (2020) Ceramide chain length-dependent protein sorting into selective endoplasmic reticulum exit sites. Sci Adv 6:1–12

    Article  Google Scholar 

  13. Shimizu Y, Takagi J, Ito E, Ito Y, Ebine K, Komatsu Y, Goto Y, Sato M, Toyooka K, Ueda T, Kurokawa K, Uemura T, Nakano A (2021) Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants. Nat Commun 12:1901

    Article  CAS  Google Scholar 

  14. Rizzo R, Russo D, Kurokawa K, Sahu P, Lombardi B, Supino D, Zhukovsky MA, Vocat A, Pothukuchi P, Kunnathully V, Capolupo L, Boncompain G, Vitagliano C, Zito Marino F, Aquino G, Montariello D, Henklein P, Mandrich L, Botti G, Clausen H, Mandel U, Yamaji T, Hanada K, Budillon A, Perez F, Parashuraman S, Hannun YA, Nakano A, Corda D, D’Angelo G, Luini A (2021) Golgi maturation-dependent glycoenzyme recycling controls glycosphingolipid biosynthesis and cell growth via GOLPH3. EMBO J 40:e107238

    Article  CAS  Google Scholar 

  15. Okamoto M, Kurokawa K, Matsuura-Tokita K, Saito C, Hirata R, Nakano A (2012) High-curvature domains of the ER are important for the organization of ER exit sites in Saccharomyces cerevisiae. J Cell Sci 125:3412–3420

    CAS  Google Scholar 

  16. Suda Y, Kurokawa K, Hirata R, Nakano A (2013) Rab GAP cascade regulates dynamics of Ypt6 in the Golgi traffic. Proc Natl Acad Sci U S A 110:18976–18981

    Article  CAS  Google Scholar 

  17. Uemura T, Suda Y, Ueda T, Nakano A (2014) Dynamic behavior of the trans-golgi network in root tissues of arabidopsis revealed by super-resolution live imaging. Plant Cell Physiol 55:694–703

    Article  CAS  Google Scholar 

  18. Kurokawa K, Okamoto M, Nakano A (2014) Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER. Nat Commun 5:3653

    Article  CAS  Google Scholar 

  19. Iwai M, Yokono M, Kurokawa K, Ichihara A, Nakano A (2016) Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures. Sci Rep 6:29940

    Article  CAS  Google Scholar 

  20. Ishii M, Suda Y, Kurokawa K, Nakano A (2016) COPI is essential for Golgi cisternal maturation and dynamics. J Cell Sci 129:3251–3261

    CAS  Google Scholar 

  21. Kurokawa K, Suda Y, Nakano A (2016) Sar1 localizes at the rims of COPII-coated membranes in vivo. J Cell Sci 129:3231–3237

    CAS  Google Scholar 

  22. Ito Y, Uemura T, Nakano A (2018) The Golgi entry core compartment functions as a COPII-independent scaffold for ER-to-Golgi transport in plant cells. J Cell Sci 131(jcs203893)

    Google Scholar 

  23. Kurokawa K, Ishii M, Suda Y, Ichihara A, Nakano A (2013) Live cell visualization of Golgi membrane dynamics by super-resolution confocal live imaging microscopy. Methods Cell Biol 118:235–242

    Article  CAS  Google Scholar 

  24. Kurokawa K, Nakano A (2020) Live-cell Imaging by super-resolution confocal live imaging microscopy (SCLIM): simultaneous three-color and four-dimensional live cell imaging with high space and time resolution. Bio-Protocol 10:1–16

    Article  Google Scholar 

  25. Boncompain G, Divoux S, Gareil N, De Forges H, Lescure A, Latreche L, Mercanti V, Jollivet F, Raposo G, Perez F (2012) Synchronization of secretory protein traffic in populations of cells. Nat Methods 9:493–498

    Article  CAS  Google Scholar 

  26. Boncompain G, Perez F (2014) Synchronization of secretory cargos trafficking in populations of cells. Methods Mol Biol 1174:211–223

    Article  Google Scholar 

  27. Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, Verkhusha VV (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Kumiko Ishii for technical assistance in sample preparation and microscopic observation. We also thank all the members of the Nakano laboratory for helpful discussions. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan (grant numbers 17H05756, 19K06669, and 19H04764 to T.T.; 17H06420 and 18H05275 to A.N.) and Japan Science and Technology Agency (JST) CREST program (grant number JPMJCR21E3 to T.T.). D.M. is supported by the RIKEN Special Postdoctoral Researcher Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuro Tojima .

Editor information

Editors and Affiliations

Additional information

This article is dedicated to Yasuhito Kosugi, who passed away in 2020.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tojima, T., Miyashiro, D., Kosugi, Y., Nakano, A. (2023). Super-Resolution Live Imaging of Cargo Traffic Through the Golgi Apparatus in Mammalian Cells. In: Wang, Y., Lupashin, V.V., Graham, T.R. (eds) Golgi. Methods in Molecular Biology, vol 2557. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2639-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2639-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2638-2

  • Online ISBN: 978-1-0716-2639-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics