Skip to main content

Comparative Tasks for Comparative Neurophysiology

  • Protocol
  • First Online:
Electrophysiological Recording Techniques

Part of the book series: Neuromethods ((NM,volume 192))

  • 462 Accesses

Abstract

Behavioral and cognitive neuroscience research aims to understand the structure and function of the brain. This work is often undertaken within the context of behaving organisms. Drawing from Pavlovian fear conditioning to abstract multistep decision paradigms, no shortage of tasks exists. Any single study may not have the intention of translation or comparison across species, but translational or comparative implications are frequently drawn without consideration for the methodological differences and related limitations. For example, findings derived from Pavlovian fear conditioning experiments serve as the foundation for the pathogenesis of anxiety disorders despite the methodological disparities in experimental protocols conducted in non-human animals versus humans. To bridge this divide, a comparative approach is necessary, where consideration of the intrinsic methodological differences is addressed. This chapter will provide a brief history of a task that has been used to study learning and memory in both humans and non-human animals: conditional associative learning. To facilitate comparative neurophysiology, empirical considerations of cross-species methodologies will be outlined. In short, this chapter will provide practical considerations for a comparative approach to facilitate both novel insight and discovery in the fields of behavioral and cognitive neuroscience and aid in the translation of findings across species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13(6):e1002165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Haaker J, Maren S, Andreatta M, Merz CJ, Richter J, Richter SH, Meir Drexler S, Lange MD, Jüngling K, Nees F, Seidenbecher T, Fullana MA, Wotjak CT, Lonsdorf TB (2019) Making translation work: harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning. Neurosci Biobehav Rev 107:329–345

    Article  PubMed  PubMed Central  Google Scholar 

  3. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anagnostaras SG, Craske MG, Fanselow MS (1999) Anxiety: at the intersection of genes and experience. Nat Neurosci 2(9):780–782

    Article  CAS  PubMed  Google Scholar 

  5. Perusini JN, Fanselow MS (2015) Neurobehavioral perspectives on the distinction between fear and anxiety. Learn Mem 22(9):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steimer T (2002) The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci 4(3):231–249

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mishra J, Gazzaley A (2016) Cross-species approaches to cognitive neuroplasticity research. NeuroImage 131:4–12

    Article  CAS  PubMed  Google Scholar 

  8. Murray EA, Wise SP, Graham KS (2017) The evolution of memory systems. In: The evolution of memory systems. Oxford University Press, Oxford

    Google Scholar 

  9. Passingham R (1993) The frontal lobes and voluntary action. Oxford University Press, Oxford

    Google Scholar 

  10. Wise SP, Murray EA (1999) Role of the hippocampal system in conditional motor learning: mapping antecedents to action. Hippocampus 9:101–117

    Article  CAS  PubMed  Google Scholar 

  11. Khin-Maung-Gyi F (2009) The history and role of institutional review boards: local and central IRBs, a single Mission. AMA J Ethics 11(4):317–321

    Google Scholar 

  12. Falk EB, Hyde LW, Mitchell C, Faul J, Gonzalez R, Heitzeg MM, Keating DP, Langa KM, Martz ME, Maslowsky J, Morrison FJ, Noll DC, Patrick ME, Pfeffer FT, Reuter-Lorenz PA, Thomason ME, Davis-Kean P, Monk CS, Schulenberg J (2013) What is a representative brain? Neuroscience meets population science. Proc Natl Acad Sci 110(44):17615–17622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paus T (2010) Population neuroscience: why and how. Hum Brain Mapp 31(6):891–903

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hackman DA, Farah MJ, Meaney MJ (2010) Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci 11(9):651–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. LeWinn KZ, Sheridan MA, Keyes KM, Hamilton A, McLaughlin KA (2017) Sample composition alters associations between age and brain structure. Nat Commun 8(1):874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. McLoyd VC (1998) Socioeconomic disadvantage and child development. Am Psychol 53(2):185–204

    Article  CAS  PubMed  Google Scholar 

  17. Colman K (2017) Impact of the genetics and source of preclinical safety animal models on study design, results, and interpretation. Toxicol Pathol 45(1):94–106

    Article  PubMed  Google Scholar 

  18. Crabbe JC, Wahlsten D, Dudek BC (1999) Genetics of mouse behavior: interactions with laboratory environment. Science 284(5420):1670–1672

    Article  CAS  PubMed  Google Scholar 

  19. Howard BR (2002) Control of variability. ILAR J 43(4):194–201

    Article  CAS  PubMed  Google Scholar 

  20. Tuttle AH, Philip VM, Chesler EJ, Mogil JS (2018) Comparing phenotypic variation between inbred and outbred mice. Nat Methods 15(12):994–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. André V, Gau C, Scheideler A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Hölter SM, Janik D, Moreth K, Neff F, Östereicher M, Racz I, Rathkolb B, Rozman J, Bekeredjian R, Graw J, Klingenspor M et al (2018) Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol 16(4):e2005019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Benefiel AC, Dong WK, Greenough WT (2005) Mandatory “enriched” housing of laboratory animals: the need for evidence-based evaluation. ILAR J 46(2):95–105

    Article  CAS  PubMed  Google Scholar 

  23. Greenough W, Benefiel A (2004) Enriching the housing of the laboratory rodent: how might it affect research outcomes? In: The development of science-based guidelines for laboratory animal care: proceedings of the November 2003 international workshop. National Academies Press, Washington, DC

    Google Scholar 

  24. Slater AM, Cao L (2015) A protocol for housing mice in an enriched environment. J Vis Exp 100:e52874

    Google Scholar 

  25. Toth LA, Gardiner TW (2000) Food and water restriction protocols: physiological and behavioral considerations. Contemp Top Lab Anim Sci 39(6):9

    CAS  PubMed  Google Scholar 

  26. Goltstein PM, Reinert S, Glas A, Bonhoeffer T, Hübener M (2018) Food and water restriction lead to differential learning behaviors in a head-fixed two-choice visual discrimination task for mice. PLoS One 13(9):e0204066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Allen TA, Salz DM, McKenzie S, Fortin NJ (2016) Nonspatial sequence coding in CA1 neurons. J Neurosci 36(5):1547–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brasted PJ, Bussey TJ, Murray EA, Wise SP (2003) Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126(5):1202–1223

    Article  CAS  PubMed  Google Scholar 

  29. Bussey TJ, Wise SP, Murray EA (2001) The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behav Neurosci 115(5):971–982

    Article  CAS  PubMed  Google Scholar 

  30. Hallock HL, Wang A, Griffin AL (2016) Ventral midline thalamus is critical for hippocampal-prefrontal synchrony and spatial working memory. J Neurosci 36(32):8372–8389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray EA, Wise SP (1996) Role of the hippocampus plus subjacent cortex but not amygdala in visuomotor conditional learning in rhesus monkeys. Behav Neurosci 110(6):1261–1270

    Article  CAS  PubMed  Google Scholar 

  32. Berry DC, Broadbent DE (1984) On the relationship between task performance and associated verbalizable knowledge. Q J Exp Psychol A 36(2):209–231

    Article  Google Scholar 

  33. Reber AS (1989) Implicit learning and tacit knowledge. J Exp Psychol Gen 118(3):219–235

    Article  Google Scholar 

  34. Shanks D, St John M (1994) Characteristics of dissociable human learning-systems. Behav Brain Sci 17(3):367–395

    Article  Google Scholar 

  35. Williams JN (2020) The neuroscience of implicit learning. Lang Learn 70(S2):255–307

    Article  Google Scholar 

  36. Atlas LY, Doll BB, Li J, Daw ND, Phelps EA (2016) Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala. elife 5:e15192

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li J, Delgado MR, Phelps EA (2011) How instructed knowledge modulates the neural systems of reward learning. Proc Natl Acad Sci 108(1):55–60

    Article  CAS  PubMed  Google Scholar 

  38. Asaad WF, Rainer G, Miller EK (1998) Neural activity in the primate prefrontal cortex during associative learning. Neuron 21(6):1399–1407

    Article  CAS  PubMed  Google Scholar 

  39. Brasted PJ, Bussey TJ, Murray EA, Wise SP (2002) Fornix transection impairs conditional visuomotor learning in tasks involving nonspatially differentiated responses. J Neurophysiol 87(1):631–633

    Article  PubMed  Google Scholar 

  40. Brovelli A, Badier J-M, Bonini F, Bartolomei F, Coulon O, Auzias G (2017) Dynamic reconfiguration of visuomotor-related functional connectivity networks. J Neurosci 37(4):839–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eliassen JC, Souza T, Sanes JN (2003) Experience-dependent activation patterns in human brain during visual-motor associative learning. J Neurosci 23(33):10540–10547. https://doi.org/10.1523/jneurosci.23-33-10540.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eliassen JC, Lamy M, Allendorfer JB, Boespflug E, Bullard DP, Smith M, Lee J-H, Strakowski SM (2012) Selective role for striatal and prefrontal regions in processing first trial feedback during single-trial associative learning. Brain Res 1458:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hargreaves EL, Mattfeld AT, Stark CEL, Suzuki WA (2012) Conserved fMRI and LFP signals during new associative learning in the human and macaque monkey medial temporal lobe. Neuron 74(4):743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Law JR, Flanery MA, Wirth S, Yanike M, Smith AC, Frank LM, Suzuki WA, Brown EN, Stark CEL (2005) Functional magnetic resonance imaging activity during the gradual acquisition and expression of paired-associate memory. J Neurosci 25(24):5720–5729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mattfeld AT, Stark CEL (2011) Striatal and medial temporal lobe functional interactions during visuomotor associative learning. Cereb Cortex 21(3):647–658

    Article  PubMed  Google Scholar 

  46. Mattfeld AT, Stark CEL (2015) Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory. Hippocampus 25(8):900–911

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pasupathy A, Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433(7028):873–876

    Article  CAS  PubMed  Google Scholar 

  48. Stark SM, Frithsen A, Mattfeld AT, Stark CEL (2018) Modulation of associative learning in the hippocampal-striatal circuit based on item-set similarity. Cortex 109:60–73

    Article  PubMed  PubMed Central  Google Scholar 

  49. Toni I, Krams M, Turner R, Passingham RE (1998) The time course of changes during motor sequence learning: a whole-brain fMRI study. NeuroImage 8(1):50–61

    Article  CAS  PubMed  Google Scholar 

  50. Toni I, Ramnani N, Josephs O, Ashburner J, Passingham RE (2001) Learning arbitrary visuomotor associations: temporal dynamic of brain activity. NeuroImage 14(5):1048–1057

    Article  CAS  PubMed  Google Scholar 

  51. Toni I (2002) Changes of cortico-striatal effective connectivity during visuomotor learning. Cereb Cortex 12(10):1040–1047

    Article  PubMed  Google Scholar 

  52. Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Suzuki WA (2003) Single neurons in the monkey hippocampus and learning of new associations. Science (New York, NY) 300(5625):1578–1581

    Article  CAS  Google Scholar 

  53. Wise SP, di Pellegrino G, Boussaoud D (1996) The premotor cortex and nonstandard sensorimotor mapping. Can J Physiol Pharmacol 74(4):469–482

    CAS  PubMed  Google Scholar 

  54. Wise SP, Murray EA (2000) Arbitrary associations between antecedents and actions. Trends Neurosci 23(6):271–276

    Article  CAS  PubMed  Google Scholar 

  55. Carr MF, Jadhav SP, Frank LM (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14(2):147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27(1):169–178

    Article  CAS  PubMed  Google Scholar 

  57. Papale AE, Zielinski MC, Frank LM, Jadhav SP, Redish AD (2016) Interplay between hippocampal sharp-wave-ripple events and vicarious trial and error behaviors in decision making. Neuron 92(5):975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edsall A, Gemzik Z, Griffin A (2017) A tactile-visual conditional discrimination task for testing spatial working memory in rats. Bio Protoc 7(10):e2282

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RGM (2007) Schemas and memory consolidation. Science (New York, NY) 316(5821):76–82

    Article  CAS  Google Scholar 

  60. Whishaw IQ, Tomie J-A (1991) Acquisition and retention by hippocampal rats of simple, conditional, and configural tasks using tactile and olfactory cues: implications for hippocampal function. Behav Neurosci 105(6):787–797

    Article  CAS  PubMed  Google Scholar 

  61. Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157(1):163–186

    Article  CAS  PubMed  Google Scholar 

  62. Brasted PJ, Wise SP (2004) Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur J Neurosci 19(3):721–740

    Article  PubMed  Google Scholar 

  63. Miyachi S, Hikosaka O, Miyashita K, Kárádi Z, Rand MK (1997) Differential roles of monkey striatum in learning of sequential hand movement. Exp Brain Res 115(1):1–5

    Article  CAS  PubMed  Google Scholar 

  64. Miyachi S, Hikosaka O, Lu X (2002) Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Exp Brain Res 146(1):122–126

    Article  PubMed  Google Scholar 

  65. Boettiger CA (2005) Frontal networks for learning and executing arbitrary stimulus-response associations. J Neurosci 25(10):2723–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brovelli A, Laksiri N, Nazarian B, Meunier M, Boussaoud D (2008) Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory. Cereb Cortex 18(7):1485–1495

    Article  PubMed  Google Scholar 

  67. Nixon PD, Passingham RE (2000) The cerebellum and cognition: cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys. Neuropsychologia 38(7):1054–1072

    Article  CAS  PubMed  Google Scholar 

  68. Sziklas V, Petrides M (2002) Effects of lesions to the hippocampus or the fornix on allocentric conditional associative learning in rats. Hippocampus 12(4):543–550

    Article  CAS  PubMed  Google Scholar 

  69. Wirth S, Avsar E, Chiu CC, Sharma V, Smith AC, Brown E, Suzuki WA (2009) Trial outcome and associative learning signals in the monkey hippocampus. Neuron 61(6):930–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang W, Luck SJ (2008) Discrete fixed-resolution representations in visual working memory. Nature 453(7192):233–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Balan PF, Oristaglio J, Schneider DM, Gottlieb J (2008) Neuronal correlates of the set-size effect in monkey lateral intraparietal area. PLoS Biol 6(7):e158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Palmer J (1990) Attentional limits on the perception and memory of visual information. J Exp Psychol Hum Percept Perform 16(2):332–350

    Article  CAS  PubMed  Google Scholar 

  73. Luck SJ, Vogel EK (2013) Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn Sci 17(8):391–400

    Article  PubMed  PubMed Central  Google Scholar 

  74. Amiez C, Hadj-Bouziane F, Petrides M (2012) Response selection versus feedback analysis in conditional visuo-motor learning. NeuroImage 59(4):3723–3735

    Article  CAS  PubMed  Google Scholar 

  75. Chouinard PA, Goodale MA (2009) FMRI adaptation during performance of learned arbitrary visuomotor conditional associations. NeuroImage 48(4):696–706

    Article  PubMed  Google Scholar 

  76. Petrides M (1997) Visuo-motor conditional associative learning after frontal and temporal lesions in the human brain. Neuropsychologia 35(7):989–997

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki WA (2008) Chapter 19: Associative learning signals in the brain. In: Progress in brain research, vol 169. Elsevier, New York, pp 305–320

    Google Scholar 

  78. Parker A, Gaffan D (1998) Memory after frontal/temporal disconnection in monkeys: conditional and non-conditional tasks, unilateral and bilateral frontal lesions. Neuropsychologia 36(3):259–271

    Article  CAS  PubMed  Google Scholar 

  79. Ambrosecchia M, Marino BFM, Gawryszewski LG, Riggio L (2015) Spatial stimulus-response compatibility and affordance effects are not ruled by the same mechanisms. Front Hum Neurosci 9:283

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford J (eds) Perceiving, acting, and knowing: toward an ecological psychology. Erlbaum, Hillsdale, pp 67–82

    Google Scholar 

  81. Simon JR, Rudell AP (1967) Auditory S-R compatibility: the effect of an irrelevant cue on information processing. J Appl Psychol 51(3):300–304

    Article  CAS  PubMed  Google Scholar 

  82. Tucker M, Ellis R (1998) On the relations between seen objects and components of potential actions. J Exp Psychol Hum Percept Perform 24(3):830–846

    Article  CAS  PubMed  Google Scholar 

  83. Simon JR (1969) Reactions toward the source of stimulation. J Exp Psychol 81(1):174–176

    Article  CAS  PubMed  Google Scholar 

  84. Winocur G, Eskes G (1998) Prefrontal cortex and caudate nucleus in conditional associative learning: Dissociated effects of selective brain lesions in rats. Behavioral Neuroscience 112(1):89

    Article  CAS  PubMed  Google Scholar 

  85. Thorndike EL (1927) The law of effect. Am J Psychol 39:212–222

    Article  Google Scholar 

  86. Delgado MR, Jou RL, Phelps EA (2011) Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers. Front Neurosci 5:71

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kirsch P, Schienle A, Stark R, Sammer G, Blecker C, Walter B, Ott U, Burkart J, Vaitl D (2003) Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. NeuroImage 20(2):1086–1095

    Article  PubMed  Google Scholar 

  88. Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. NeuroImage 18(2):263–272

    Article  PubMed  Google Scholar 

  89. O’Doherty JP (2004) Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol 14(6):769–776

    Article  PubMed  CAS  Google Scholar 

  90. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337

    Article  PubMed  Google Scholar 

  91. Vohs KD, Mead NL, Goode MR (2006) The psychological consequences of money. Science 314(5802):1154–1156

    Article  CAS  PubMed  Google Scholar 

  92. Knowlton BJ, Squire LR, Gluck MA (1994) Probabilistic classification learning in amnesia. Learn Mem 1(2):106–120. https://doi.org/10.1101/lm.1.2.106

    Article  CAS  PubMed  Google Scholar 

  93. Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science (New York, NY) 273(5280):1399–1402

    Article  CAS  Google Scholar 

  94. Poldrack RA, Clark J, Paré-Blagoev EJ, Shohamy D, Creso Moyano J, Myers C, Gluck MA (2001) Interactive memory systems in the human brain. Nature 414(6863):546–550

    Article  CAS  PubMed  Google Scholar 

  95. Poldrack RA, Packard MG (2003) Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41(3):245–251

    Article  PubMed  Google Scholar 

  96. Elliott R, Newman JL, Longe OA, Deakin JFW (2003) Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci Off J Soc Neurosci 23(1):303–307

    Article  CAS  Google Scholar 

  97. O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33(5):815–826

    Article  PubMed  Google Scholar 

  98. Dudai Y, Karni A, Born J (2015) The consolidation and transformation of memory. Neuron 88(1):20–32. ISSN 0896-6273. https://doi.org/10.1016/j.neuron.2015.09.004

  99. Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62

    Article  PubMed  Google Scholar 

  101. Buzsáki G (1996) The hippocampo-neocortical dialogue. Cereb Cortex (New York, NY 1991) 6(2):81–92

    Article  Google Scholar 

  102. Varela C, Wilson MA (2020) MPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. elife 9:e48881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buzsáki G (1998) Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 7(Suppl 1):17–23

    Article  PubMed  Google Scholar 

  104. Bussey TJ, Wise SP, Murray EA (2002) Interaction of ventral and orbital prefrontal cortex with inferotemporal cortex in conditional visuomotor learning. Behav Neurosci 116(4):703–715

    Article  PubMed  Google Scholar 

  105. Eacott MJ, Gaffan D (1992) Inferotemporal-frontal disconnection: the uncinate fascicle and visual associative learning in monkeys. Eur J Neurosci 4(12):1320–1332

    Article  PubMed  Google Scholar 

  106. Gaffan D, Easton A, Parker A (2002) Interaction of inferior temporal cortex with frontal cortex and basal forebrain: double dissociation in strategy implementation and associative learning. J Neurosci 22(16):7288–7296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hadj-Bouziane F, Boussaoud D (2003) Neuronal activity in the monkey striatum during conditional visuomotor learning. Exp Brain Res 153(2):190–196

    Article  PubMed  Google Scholar 

  108. Hadj-Bouziane F, Meunier M, Boussaoud D (2003) Conditional visuo-motor learning in primates: a key role for the basal ganglia. J Physiol Paris 97(4–6):567–579

    Article  PubMed  Google Scholar 

  109. Kim SM, Frank LM (2009) Hippocampal lesions impair rapid learning of a continuous spatial alternation task. PLoS One 4(5):e5494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bell AH, Bultitude JH (2018) Methods matter: a primer on permanent and reversible interference techniques in animals for investigators of human neuropsychology. Neuropsychologia 115:211–219

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gallo M (2007) Reversible inactivation of brain circuits in learning and memory research. In: Bermúdez-Rattoni F (ed) Neural plasticity and memory: from genes to brain imaging. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  112. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  113. Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Allen TA, Narayanan NS, Kholodar-Smith DB, Zhao Y, Laubach M, Brown TH (2008) Imaging the spread of reversible brain inactivations using fluorescent muscimol. J Neurosci Methods 171(1):30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goaillard J-M, Taylor AL, Pulver SR, Marder E (2010) Slow and persistent postinhibitory rebound acts as an intrinsic short-term memory mechanism. J Neurosci 30(13):4687–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Karnath H-O, Sperber C, Rorden C (2018) Mapping human brain lesions and their functional consequences. NeuroImage 165:180–189

    Article  CAS  PubMed  Google Scholar 

  117. Mah Y-H, Husain M, Rees G, Nachev P (2014) Human brain lesion-deficit inference remapped. Brain 137(9):2522–2531

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sejnowski TJ, Churchland PS, Movshon JA (2014) Putting big data to good use in neuroscience. Nat Neurosci 17(11):1440–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rey HG, Ison MJ, Pedreira C, Valentin A, Alarcon G, Selway R, Richardson MP, Quiroga RQ (2015) Single-cell recordings in the human medial temporal lobe. J Anat 227(4):394–408

    Article  PubMed  Google Scholar 

  120. Zhang H, Fell J, Axmacher N (2018) Electrophysiological mechanisms of human memory consolidation. Nat Commun 9(1):4103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Goense JBM, Whittingstall K, Logothetis NK (2010) Functional magnetic resonance imaging of awake behaving macaques. Methods (San Diego, CA) 50(3):178–188

    Article  CAS  Google Scholar 

  122. Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF, Chakravarty MM, Dhenain M, Dijkhuizen RM, Gozzi A, Hess A, Keilholz SD, Lerch JP, Shih Y-YI, Grandjean J (2020) Animal functional magnetic resonance imaging: trends and path toward standardization. Front Neuroinform 13:78

    Article  PubMed  PubMed Central  Google Scholar 

  123. Pelekanos V, Mok RM, Joly O, Ainsworth M, Kyriazis D, Kelly MG, Bell AH, Kriegeskorte N (2020) Rapid event-related, BOLD fMRI, non-human primates (NHP): choose two out of three. Sci Rep 10(1):7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878

    Article  CAS  PubMed  Google Scholar 

  125. Yang T, Bavley RL, Fomalont K, Blomstrom KJ, Mitz AR, Turchi J, Rudebeck PH, Murray EA (2014) Contributions of the hippocampus and entorhinal cortex to rapid visuomotor learning in rhesus monkeys. Hippocampus 24(9):1102–1111

    Article  PubMed  PubMed Central  Google Scholar 

  126. Grol MJ, de Lange FP, Verstraten FAJ, Passingham RE, Toni I (2006) Cerebral changes during performance of overlearned arbitrary visuomotor associations. J Neurosci 26(1):117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bédard P, Sanes JN (2009) On a basal ganglia role in learning and rehearsing visual–motor associations. NeuroImage 47(4):1701–1710

    Article  PubMed  Google Scholar 

  128. Sziklas V, Petrides M (2004) Egocentric conditional associative learning: effects of restricted lesions to the hippocampo-mammillo-thalamic pathway. Hippocampus 14(8):931–934

    Article  CAS  PubMed  Google Scholar 

  129. Genovesio A, Brasted PJ, Mitz AR, Wise SP (2005) Prefrontal cortex activity related to abstract response strategies. Neuron 47(2):307–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Buch ER, Brasted PJ, Wise SP (2006) Comparison of population activity in the dorsal premotor cortex and putamen during the learning of arbitrary visuomotor mappings. Exp Brain Res 169(1):69–84

    Article  PubMed  Google Scholar 

  131. Smith AC, Frank LM, Wirth S, Yanike M, Hu D, Kubota Y, Graybiel AM, Suzuki WA, Brown EN (2004) Dynamic analysis of learning in behavioral experiments. J Neurosci 24(2):447–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mattfeld AT, Gluck MA, Stark CEL (2011) Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learn Mem 18(11):703–711

    Article  PubMed  PubMed Central  Google Scholar 

  133. Canavan AGM, Sprengelmeyer R (1994) Conditional associative learning is impaired in cerebellar disease in humans. Behav Neurosci 108:475–485

    Article  CAS  PubMed  Google Scholar 

  134. Cahusac PMB, Rolls ET, Miyashita Y, Niki H (1993) Modification of the responses of hippocampal neurons in the monkey during the learning of a conditional spatial response task. Hippocampus 3(1):29–42

    Article  CAS  PubMed  Google Scholar 

  135. Yanike M, Wirth S, Smith AC, Brown EN, Suzuki WA (2009) Comparison of associative learning-related signals in the macaque perirhinal cortex and hippocampus. Cereb Cortex 19(5):1064–1078

    Article  PubMed  Google Scholar 

  136. O’Keefe J, Dostrovsky J (1971) The hippo-campus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Google Scholar 

  137. Shin JD, Jadhav SP (2016) Multiple modes of hippocampal-prefrontal interactions in memory-guided behavior. Curr Opin Neurobiol 40:161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI (2010) Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66(6):921–936

    Article  CAS  PubMed  Google Scholar 

  139. Shin JD, Tang W, Jadhav SP (2019) Dynamics of awake hippocampal-prefrontal replay for spatial learning and memory-guided decision making. Neuron 104(6):1110–1125.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zielinski MC, Tang W, Jadhav SP (2020) The role of replay and theta sequences in mediating hippocampal-prefrontal interactions for memory and cognition. Hippocampus 30(1):60–72

    Article  PubMed  Google Scholar 

  141. Jadhav SP, Kemere C, German PW, Frank LM (2012) Awake hippocampal sharp-wave ripples support spatial memory. Science 336(6087):1454–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9(1):357–381

    Article  CAS  PubMed  Google Scholar 

  143. Yin HH, Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476

    Article  CAS  PubMed  Google Scholar 

  144. Williams ZM, Eskandar EN (2006) Selective enhancement of associative learning by microstimulation of the anterior caudate. Nat Neurosci 9(4):562–568

    Article  CAS  PubMed  Google Scholar 

  145. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2):69–97

    Article  CAS  PubMed  Google Scholar 

  146. Pennartz CMA, Berke JD, Graybiel AM, Ito R, Lansink CS, van der Meer M, Redish AD, Smith KS, Voorn P (2009) Corticostriatal interactions during learning, memory processing, and decision making. J Neurosci 29(41):12831–12838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843):150–157

    Article  CAS  PubMed  Google Scholar 

  148. Michel CM, Brunet D (2019) EEG source imaging: a practical review of the analysis steps. Front Neurol 10:325

    Article  PubMed  PubMed Central  Google Scholar 

  149. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen-Bee CH, Agoncillo T, Xiong Y, Frostig RD (2007) The triphasic intrinsic signal: implications for functional imaging. J Neurosci 27(17):4572–4586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Brovelli A, Nazarian B, Meunier M, Boussaoud D (2011) Differential roles of caudate nucleus and putamen during instrumental learning. NeuroImage 57(4):1580–1590

    Article  PubMed  Google Scholar 

  152. Haruno M, Kawato M (2006) Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. J Neurophysiol 95(2):948–959

    Article  PubMed  Google Scholar 

  153. Toni I, Rushworth M, Passingham R (2001) Neural correlates of visuomotor associations. Exp Brain Res 141(3):359–369

    Article  CAS  PubMed  Google Scholar 

  154. Toni I, Thoenissen D, Zilles K, Niedeggen M (2002) Movement preparation and working memory: A behavioral dissociation. Exp Brain Res 142:158–162

    Google Scholar 

  155. Hamm AG, Mattfeld AT (2019) Distinct neural circuits underlie prospective and concurrent memory-guided behavior. Cell Rep 28(10):2541–2553.e4

    Article  CAS  PubMed  Google Scholar 

  156. Tang W, Shin JD, Frank LM, Jadhav SP (2017) Hippocampal-prefrontal reactivation during learning is stronger in awake compared with sleep states. J Neurosci 37(49):11789–11805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Petersen SE, Dubis JW (2012) The mixed block/event-related design. NeuroImage 62(2):1177–1184

    Article  PubMed  Google Scholar 

  158. Watanabe M, Bartels A, Macke JH, Murayama Y, Logothetis NK (2013) Temporal jitter of the BOLD signal reveals a reliable initial dip and improved spatial resolution. Curr Biol 23(21):2146–2150

    Article  CAS  PubMed  Google Scholar 

  159. González Ballester MÁ, Zisserman AP, Brady M (2002) Estimation of the partial volume effect in MRI. Med Image Anal 6(4):389–405

    Article  PubMed  Google Scholar 

  160. Weibull A, Gustavsson H, Mattsson S, Svensson J (2008) Investigation of spatial resolution, partial volume effects and smoothing in functional MRI using artificial 3D time series. NeuroImage 41(2):346–353

    Article  CAS  PubMed  Google Scholar 

  161. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59(3):2142–2154

    Article  PubMed  Google Scholar 

  162. Murphy K, Birn RM, Bandettini PA (2013) Resting-state FMRI confounds and cleanup. NeuroImage 80:349–359

    Article  PubMed  Google Scholar 

  163. Button KS, Ioannidis JPA, Mokrysz C, Nosek BA, Flint J, Robinson ESJ, Munafò MR (2013) Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14(5):365–376

    Article  CAS  PubMed  Google Scholar 

  164. Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci 113(28):7900–7905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron T. Mattfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mattfeld, A.T. (2022). Comparative Tasks for Comparative Neurophysiology. In: Vertes, R.P., Allen, T. (eds) Electrophysiological Recording Techniques. Neuromethods, vol 192. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2631-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2631-3_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2630-6

  • Online ISBN: 978-1-0716-2631-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics