Skip to main content

PITHA: A Webtool to Predict Immunogenicity for Humanized and Fully Human Therapeutic Antibodies

  • Protocol
  • First Online:
Computer-Aided Antibody Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2552))

  • 2045 Accesses

Abstract

Immunogenicity is an important concern to therapeutic antibodies during antibody design and development. Based on the co-crystal structures of idiotypic antibodies and their antibodies, one can see that anti-idiotypic antibodies usually bind the complementarity-determining regions (CDR) of idiotypic antibodies. Sequence and structural features, such as cavity volume at the CDR region and hydrophobicity of CDR-H3 loop region, were identified for distinguishing immunogenic antibodies from non-immunogenic antibodies. These features were integrated together with a machine learning platform to predict immunogenicity for humanized and fully human therapeutic antibodies (PITHA). This method achieved an accuracy of 83% in a leave-one-out experiment for 29 therapeutic antibodies with available crystal structures. The web server of this method is accessible at http://mabmedicine.com/PITHA or http://sysbio.unl.edu/PITHA. This method, as a step of computer-aided antibody design, helps evaluate the safety of new therapeutic antibody, which can save time and money during the therapeutic antibody development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lagasse HA, Alexaki A, Simhadri VL et al (2017) Recent advances in (therapeutic protein) drug development. F1000Res 6:113. https://doi.org/10.12688/f1000research.9970.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol 899:1–26. https://doi.org/10.1007/978-1-61779-921-1_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ridker PM, Tardif JC, Amarenco P et al (2017) Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med 376(16):1517–1526. https://doi.org/10.1056/NEJMoa1614062

    Article  CAS  PubMed  Google Scholar 

  4. Dingman R, Balu-Iyer SV (2019) Immunogenicity of protein pharmaceuticals. J Pharm Sci 108(5):1637–1654. https://doi.org/10.1016/j.xphs.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  5. Yin L, Chen X, Vicini P et al (2015) Therapeutic outcomes, assessments, risk factors and mitigation efforts of immunogenicity of therapeutic protein products. Cell Immunol 295(2):118–126. https://doi.org/10.1016/j.cellimm.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  6. Baker MP, Reynolds HM, Lumicisi B et al (2010) Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1(4):314–322. https://doi.org/10.4161/self.1.4.13904

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jawa V, Cousens LP, Awwad M et al (2013) T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol 149(3):534–555. https://doi.org/10.1016/j.clim.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  8. van Beers MM, Bardor M (2012) Minimizing immunogenicity of biopharmaceuticals by controlling critical quality attributes of proteins. Biotechnol J 7(12):1473–1484. https://doi.org/10.1002/biot.201200065

    Article  CAS  PubMed  Google Scholar 

  9. Cantor JR, Yoo TH, Dixit A et al (2011) Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proc Natl Acad Sci U S A 108(4):1272–1277. https://doi.org/10.1073/pnas.1014739108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salvat RS, Choi Y, Bishop A et al (2015) Protein deimmunization via structure-based design enables efficient epitope deletion at high mutational loads. Biotechnol Bioeng 112(7):1306–1318. https://doi.org/10.1002/bit.25554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King C, Garza EN, Mazor R et al (2014) Removing T-cell epitopes with computational protein design. Proc Natl Acad Sci U S A 111(23):8577–8582. https://doi.org/10.1073/pnas.1321126111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36(1):3–10. https://doi.org/10.1016/j.ymeth.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Lonberg N (2008) Fully human antibodies from transgenic mouse and phage display platforms. Curr Opin Immunol 20(4):450–459. https://doi.org/10.1016/j.coi.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  14. Gao SH, Huang K, Tu H et al (2013) Monoclonal antibody humanness score and its applications. BMC Biotechnol 13:55. https://doi.org/10.1186/1472-6750-13-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168. https://doi.org/10.1186/1471-2105-10-168

    Article  PubMed  PubMed Central  Google Scholar 

  16. Word JM, Lovell SC, Richardson JS et al (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747. https://doi.org/10.1006/jmbi.1998.2401

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was completed utilizing the Holland Computing Center of the University of Nebraska. Bio-Thera Solutions owns the patent right relating to the algorithm described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liang, S., Zhang, C. (2023). PITHA: A Webtool to Predict Immunogenicity for Humanized and Fully Human Therapeutic Antibodies. In: Tsumoto, K., Kuroda, D. (eds) Computer-Aided Antibody Design. Methods in Molecular Biology, vol 2552. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2609-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2609-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2608-5

  • Online ISBN: 978-1-0716-2609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics