Skip to main content

Structural Considerations in Affinity Maturation of Antibody-Based Biotherapeutic Candidates

  • Protocol
  • First Online:
Computer-Aided Antibody Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2552))

  • 2105 Accesses

Abstract

Affinity maturation is an important stage in biologic drug discovery as is the natural process of generating an immune response inside the human body. In this chapter, we describe in silico approaches to affinity maturation via a worked example. Both advantages and limitations of the computational methods used are critically examined. Furthermore, construction of affinity maturation libraries and how their outputs might be implemented in an experimental setting are also described. It should be noted that structure-based design of biologic drugs is an emerging field and the tools currently available require further development. Furthermore, there are no standardized structure-based strategies yet for antibody affinity maturation as this research relies heavily on scientific logic as well as creative intuition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirkham PM, Schroeder HW Jr (1994) Antibody structure and the evolution of immunoglobulin V gene segments. Semin Immunol 6(6):347–360

    Article  CAS  PubMed  Google Scholar 

  2. Fanning LJ, Connor AM, Wu GE (1996) Development of the immunoglobulin repertoire. Clin Immunol Immunopathol 79(1):1–14

    Article  CAS  PubMed  Google Scholar 

  3. French DL, Laskov R, Scharff MD (1989) The role of somatic hypermutation in the generation of antibody diversity. Science 244(4909):1152–1157

    Article  CAS  PubMed  Google Scholar 

  4. Hoet RM et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23(3):344–348

    Article  CAS  PubMed  Google Scholar 

  5. Winter G et al (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  CAS  PubMed  Google Scholar 

  6. Feldhaus MJ, Siegel RW (2004) Yeast display of antibody fragments: a discovery and characterization platform. J Immunol Methods 290(1–2):69–80

    Article  CAS  PubMed  Google Scholar 

  7. Hoogenboom HR et al (1998) Antibody phage display technology and its applications. Immunotechnology 4(1):1–20

    Article  CAS  PubMed  Google Scholar 

  8. Briney B et al (2019) Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 566(7744):393–397

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hsiao YC et al (2019) Immune repertoire mining for rapid affinity optimization of mouse monoclonal antibodies. MAbs 11(4):735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schroeder HW Jr (2006) Similarity and divergence in the development and expression of the mouse and human antibody repertoires. Dev Comp Immunol 30(1–2):119–135

    Article  CAS  PubMed  Google Scholar 

  11. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nimrod G et al (2018) Computational design of epitope-specific functional antibodies. Cell Rep 25(8):2121–2131 e5

    Article  CAS  PubMed  Google Scholar 

  13. Sormanni P, Aprile FA, Vendruscolo M (2018) Third generation antibody discovery methods: in silico rational design. Chem Soc Rev 47(24):9137–9157

    Article  CAS  PubMed  Google Scholar 

  14. Nishigami H, Kamiya N, Nakamura H (2016) Revisiting antibody modeling assessment for CDR-H3 loop. Protein Eng Des Sel 29(11):477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kuhlman B, Bradley P (2019) Advances in protein structure prediction and design. Nat Rev Mol Cell Biol 20(11):681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kenniston JA et al (2014) Inhibition of plasma kallikrein by a highly specific active site blocking antibody. J Biol Chem 289(34):23596–23608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banerji A et al (2017) Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N Engl J Med 376(8):717–728

    Article  CAS  PubMed  Google Scholar 

  18. Norman RA et al (2019) Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform 21(5):1549–1567

    Article  PubMed Central  Google Scholar 

  19. http://www.chemcomp.com, Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC, 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2019

  20. Labute P (2010) LowModeMD–implicit low-mode velocity filtering applied to conformational search of macrocycles and protein loops. J Chem Inf Model 50(5):792–800

    Article  CAS  PubMed  Google Scholar 

  21. Amimeur TS, Shaver JM, Ketchem RR, Taylor JA, Clark RH, Smith J, Van Citters D, Siska CC, Smidt P, Sprague M, Kerwin BA, Pettit D (2020) Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks. bioRxiv. https://doi.org/10.1101/2020.04.12.024844

  22. Hughes RA, Ellington AD (2017) Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. Cold Spring Harb Perspect Biol 9(1):a023812

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lim CC, Choong YS, Lim TS (2019) Cognizance of molecular methods for the generation of mutagenic phage display antibody libraries for affinity maturation. Int J Mol Sci 20(8):1861

    Article  CAS  PubMed Central  Google Scholar 

  24. Kumar S et al (2018) Biopharmaceutical informatics: supporting biologic drug development via molecular modelling and informatics. J Pharm Pharmacol 70(5):595–608

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Comeau, S.R., Thorsteinson, N., Kumar, S. (2023). Structural Considerations in Affinity Maturation of Antibody-Based Biotherapeutic Candidates. In: Tsumoto, K., Kuroda, D. (eds) Computer-Aided Antibody Design. Methods in Molecular Biology, vol 2552. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2609-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2609-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2608-5

  • Online ISBN: 978-1-0716-2609-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics