Skip to main content

Identification of Distinct Soluble States During Fibril Formation Using Multilinear Analysis of NMR Diffusion Data

  • Protocol
  • First Online:
Protein Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Protein misfolding and self-assembling into amyloid structures are associated with a number of diseases. Characterization of protein amyloid formation reactions is a challenging task as transient populations of multiple species are involved. Here we outline a method for identification and characterization of the individual soluble states during protein amyloid formation. The method combines NMR translational diffusion measurements with multilinear data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatani E, Yamamoto N (2018) Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev 10(2):527–534. https://doi.org/10.1007/s12551-017-0353-8

    Article  CAS  PubMed  Google Scholar 

  2. Michaels TCT, Šarić A, Curk S et al (2020) Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat Chem 12(5):445–451. https://doi.org/10.1038/s41557-020-0452-1

    Article  CAS  PubMed  Google Scholar 

  3. Jensen KS, Linse S, Nilsson M et al (2019) Revealing well-defined soluble states during amyloid fibril formation by multilinear analysis of NMR diffusion data. J Am Chem Soc 141(47):18649–18652. https://doi.org/10.1021/jacs.9b07952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bro R (1997) PARAFAC. Tutorial and applications. Chemom Intell Lab Syst 38(2):149–172

    Article  CAS  Google Scholar 

  5. Dal Poggetto G, Castañar L, Adams RW et al (2017) Relaxation-encoded NMR experiments for mixture analysis: REST and beer. Chem Commun 53(54):7461–7464. https://doi.org/10.1039/C7CC03150E

    Article  CAS  Google Scholar 

  6. Colbourne AA, Meier S, Morris GA et al (2013) Unmixing the NMR spectra of similar species–vive la différence. Chem Commun 49(89):10510–10512. https://doi.org/10.1039/C3CC46228E

    Article  CAS  Google Scholar 

  7. Colbourne AA, Morris GA, Nilsson M (2011) Local covariance order diffusion-ordered spectroscopy: a powerful tool for mixture analysis. J Am Chem Soc 133(20):7640–7643. https://doi.org/10.1021/ja2004895

    Article  CAS  PubMed  Google Scholar 

  8. Khajeh M, Botana A, Bernstein MA et al (2010) Reaction kinetics studied using diffusion-ordered spectroscopy and multiway chemometrics. Anal Chem 82(5):2102–2108. https://doi.org/10.1021/ac100110m

    Article  CAS  PubMed  Google Scholar 

  9. Nilsson M, Khajeh M, Botana A et al (2009) Diffusion NMR and trilinear analysis in the study of reaction kinetics. Chem Commun 10:1252–1254. https://doi.org/10.1039/B820813A

    Article  Google Scholar 

  10. Björnerås J, Botana A, Morris GA et al (2014) Resolving complex mixtures: trilinear diffusion data. J Biomol NMR 58(4):251–257. https://doi.org/10.1007/s10858-013-9752-8

    Article  CAS  PubMed  Google Scholar 

  11. Claus A, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52:1–4

    Article  Google Scholar 

  12. Khan MAI, Respondek M, Kjellstrom S et al (2017) Cu/Zn superoxide dismutase forms amyloid fibrils under near-physiological quiescent conditions: the roles of disulfide bonds and effects of denaturant. ACS Chem Neurosci 8(9):2019–2026. https://doi.org/10.1021/acschemneuro.7b00162

    Article  CAS  PubMed  Google Scholar 

  13. Bille A, Jensen KS, Mohanty S et al (2019) Stability and local unfolding of SOD1 in the presence of protein crowders. J Phys Chem B 123(9):1920–1930. https://doi.org/10.1021/acs.jpcb.8b10774

    Article  CAS  PubMed  Google Scholar 

  14. Ferrage F, Zoonens M, Warschawski DE et al (2003) Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method. J Am Chem Soc 125(9):2541–2545. https://doi.org/10.1021/ja0211407

    Article  CAS  PubMed  Google Scholar 

  15. Ferrage F, Zoonens M, Warschawski DE et al (2004) Correction to Ref. [14]. J Am Chem Soc 126(17):5654. https://doi.org/10.1021/ja033464g

    Article  CAS  Google Scholar 

  16. Connell MA, Bowyer PJ, Bone PA et al (2009) Improving the accuracy of pulsed field gradient NMR diffusion experiments: correction for gradient non-uniformity. J Magn Reson 198(1):121–131. https://doi.org/10.1016/j.jmr.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  17. Barbosa TM, Rittner R, Tormena CF et al (2016) Convection in liquid-state NMR: expect the unexpected. RSC Adv 6(97):95173–95176. https://doi.org/10.1039/C6RA23427E

    Article  CAS  Google Scholar 

  18. Nilsson M, Gil AM, Delgadillo I et al (2005) Improving pulse sequences for 3D DOSY: COSY-IDOSY. Chem Commun 13:1737–1739. https://doi.org/10.1039/B415099F

    Article  Google Scholar 

  19. Swan I, Reid M, Howe P et al (2015) Sample convection in liquid-state NMR: why it is always with us, and what we can do about it. J Magn Reson 252:120–129. https://doi.org/10.1016/j.jmr.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  20. Engelsen SB, Bro R (2003) PowerSlicing. J Magn Reson 163(1):192–197. https://doi.org/10.1016/S1090-7807(03)00125-3

    Article  CAS  PubMed  Google Scholar 

  21. Nicoud L, Lattuada M, Yates A et al (2015) Impact of aggregate formation on the viscosity of protein solutions. Soft Matter 11(27):5513–5522. https://doi.org/10.1039/C5SM00513B

    Article  CAS  PubMed  Google Scholar 

  22. Sinnaeve D (2012) The Stejskal–Tanner equation generalized for any gradient shape—an overview of most pulse sequences measuring free diffusion. Concepts Magn Reson A 40(2):39–65. https://doi.org/10.1002/cmr.a.21223

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Ulrich Weininger for his help with the HSQC-based DOSY experiments.

The work founding this protocol is supported by the Swedish Research Council (2014-5815 to M.A) and (2020-04888 to KSJ), the Danish Council for Independent Research, Sapere Aude: DFF Research Talent (DFF − 4002-00258 to KSJ), and the Engineering and Physical Sciences Research Council (EP/E05899X/1 to MN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Steen Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jensen, K.S., Nilsson, M., Akke, M., Malmendal, A. (2023). Identification of Distinct Soluble States During Fibril Formation Using Multilinear Analysis of NMR Diffusion Data. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_29

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics