Skip to main content

An Additive-Free Model for Tau Self-Assembly

  • Protocol
  • First Online:
Protein Aggregation

Abstract

Tau is a natively unfolded protein that contributes to the stability of microtubules. Under pathological conditions such as Alzheimer’s disease (AD), tau protein misfolds and self-assembles to form paired helical filaments (PHFs) and straight filaments (SFs). Full-length tau protein assembles poorly and its self-assembly is enhanced with polyanions such as heparin and RNA in vitro, but a role for heparin or other polyanions in vivo remains unclear. Recently, a truncated form of tau (297–391) has been shown to self-assemble in the absence of additives which provides an alternative in vitro PHF model system. Here we describe methods to prepare in vitro PHFs and SFs from tau (297–391) named dGAE. We also discuss the range of biophysical/biochemical techniques used to monitor tau filament assembly and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weingarten MD, Lockwood AH, Hwo SY et al (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862. https://doi.org/10.1073/pnas.72.5.1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mukrasch MD, Bibow S, Korukottu J et al (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7(2):e34. https://doi.org/10.1371/journal.pbio.1000034

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21. https://doi.org/10.1038/nrn.2015.1

    Article  CAS  PubMed  Google Scholar 

  4. Goedert M, Spillantini MG, Jakes R et al (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526. https://doi.org/10.1016/0896-6273(89)90210-9

    Article  CAS  PubMed  Google Scholar 

  5. Fichou Y, Al-Hilaly YK, Devred F et al (2019) The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun 7(1):31. https://doi.org/10.1186/s40478-019-0682-x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bukar Maina M, Al-Hilaly YK, Serpell LC (2016) Nuclear tau and its potential role in Alzheimer’s disease. Biomol Ther 6(1):9. https://doi.org/10.3390/biom6010009

    Article  CAS  Google Scholar 

  7. Kimura T, Sharma G, Ishiguro K et al (2018) Phospho-tau bar code: analysis of phosphoisotypes of tau and its application to tauopathy. Front Neurosci 12:44. https://doi.org/10.3389/fnins.2018.00044

    Article  PubMed  PubMed Central  Google Scholar 

  8. Iqbal K, Liu F, Gong CX et al (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wischik CM, Novak M, Thogersen HC et al (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85(12):4506–4510. https://doi.org/10.1073/pnas.85.12.4506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16(11):460–465. https://doi.org/10.1016/0166-2236(93)90078-z

    Article  CAS  PubMed  Google Scholar 

  11. Berriman J, Serpell LC, Oberg KA et al (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc Natl Acad Sci U S A 100(15):9034–9038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fitzpatrick AWP, Falcon B, He S et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547(7662):185–190. https://doi.org/10.1038/nature23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Falcon B, Zivanov J, Zhang W et al (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568(7752):420–423. https://doi.org/10.1038/s41586-019-1026-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Falcon B, Zhang W, Murzin AG et al (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561(7721):137–140. https://doi.org/10.1038/s41586-018-0454-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perez M, Valpuesta JM, Medina M et al (1996) Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. J Neurochem 67(3):1183–1190. https://doi.org/10.1046/j.1471-4159.1996.67031183.x

    Article  CAS  PubMed  Google Scholar 

  16. Kampers T, Friedhoff P, Biernat J et al (1996) RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett 399(3):344–349. https://doi.org/10.1016/s0014-5793(96)01386-5

    Article  CAS  PubMed  Google Scholar 

  17. Dregni AJ, Mandala VS, Wu H et al (2019) In vitro 0N4R tau fibrils contain a monomorphic β-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Proc Natl Acad Sci U S A 116(33):16357. https://doi.org/10.1073/pnas.1906839116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang W, Falcon B, Murzin AG et al (2019) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. elife 8:e43584. https://doi.org/10.7554/eLife.43584

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fichou Y, Vigers M, Goring AK et al (2018) Heparin-induced tau filaments are structurally heterogeneous and differ from Alzheimer’s disease filaments. Chem Commun 54(36):4573–4576. https://doi.org/10.1039/c8cc01355a

    Article  CAS  Google Scholar 

  20. Al-Hilaly YK, Foster BE, Biasetti L et al (2020) Tau (297-391) forms filaments that structurally mimic the core of paired helical filaments in Alzheimer’s disease brain. FEBS Lett 594(5):944–950. https://doi.org/10.1002/1873-3468.13675

    Article  CAS  PubMed  Google Scholar 

  21. Al-Hilaly YK, Pollack SJ, Vadukul DM et al (2017) Alzheimer’s disease-like paired helical filament assembly from truncated tau protein is independent of disulfide crosslinking. J Mol Biol 429(23):3650–3665. https://doi.org/10.1016/j.jmb.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  22. Lövestam S et al (2022) Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. eLife, 11: p. e76494

    Google Scholar 

  23. Lutter L et al (2022) Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis. Journal of Molecular Biology, 434(7): p. 167466

    Google Scholar 

  24. Vadukul DM, Al-Hilaly YK, Serpell LC (2019) Methods for structural analysis of amyloid fibrils in Misfolding diseases. Methods Mol Biol 1873:109–122. https://doi.org/10.1007/978-1-4939-8820-4_7

    Article  CAS  PubMed  Google Scholar 

  25. Rickard JE, Horsley D, Wischik CM et al (2017) Assays for the screening and characterization of tau aggregation inhibitors. Methods Mol Biol 1523:129–140. https://doi.org/10.1007/978-1-4939-6598-4_8

    Article  CAS  PubMed  Google Scholar 

  26. Novak M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J 12(1):365–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novak M, Jakes R, Edwards PC et al (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci U S A 88(13):5837–5841. https://doi.org/10.1073/pnas.88.13.5837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leslie AGW (1992) Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography 26

    Google Scholar 

  29. Zibaee S, Makin OS, Goedert M et al (2007) A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci 16(5):906–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Makin OS, Atkins E, Sikorski P et al (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 102(2):315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morris KL, Serpell LC (2012) X-ray fibre diffraction studies of amyloid fibrils. Methods Mol Biol 849:121–135. https://doi.org/10.1007/978-1-61779-551-0_9

    Article  CAS  PubMed  Google Scholar 

  32. Makin OS, Serpell LC (2005) X-ray diffraction studies of amyloid structure. Methods Mol Biol 299:67–80

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssra K. Al-Hilaly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Al-Hilaly, Y.K. et al. (2023). An Additive-Free Model for Tau Self-Assembly. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics