Skip to main content

Part of the book series: Neuromethods ((NM,volume 187))

  • 317 Accesses

Abstract

In whole-cell patch clamp mode, the internal solution of the micropipette perfuses the cell replacing the much smaller cytosolic solution. Because of this, some soluble factors that modulate cellular excitability and influence signaling pathways are washed out via the micropipette causing altered intracellular signaling, cellular function, or the active state of ion channels. One of the commonly observed consequences is current rundown, which refers to the gradual loss of current over time. To overcome this problem, membrane permeabilizing substrates, including nystatin, amphotericin B, gramicidin D, and β-escin, are commonly used for forming perforation in the membrane. As a result, key cytosolic factors remain in the cytosol. This chapter discusses the mechanisms of action of nystatin, amphotericin B, gramicidin D, and β-escin as well as their advantages and disadvantages in electrophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarantopoulos C (2007) Perforated patch-clamp techniques. NeuroMethods 38:253–293

    Article  CAS  Google Scholar 

  2. Furukawa T, Yamane T-i, Terai T, Katayama Y, Hiraoka M (1996) Functional linkage of the cardiac ATP-sensitive K+ channel to the actin cytoskeleton. Pflugers Arch 431(4):504–512

    Article  CAS  Google Scholar 

  3. Arav R, Friedberg I (1985) ATP analogues induce membrane permeabilization in transformed mouse fibroblasts. Biochim Biophys Acta (BBA) Biomembr 820(2):183–188

    Article  CAS  Google Scholar 

  4. Akaike N, Harata N (1994) Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol 44(5):433–473

    Article  CAS  Google Scholar 

  5. Cotero BV, Rebolledo-Antunez S, Ortega- Blake I (1998) On the role of sterol in the formation of the amphotericin B channel. Biochim Biophys Acta 1375(1–2):43–51

    Article  CAS  Google Scholar 

  6. Gruszecki WI, Gagos M, Herec M, Kernen P (2003) Organization of antibiotic amphotericin B in model lipid membranes. A mini review. Cell Mol Biol Lett 8(1):161–170

    CAS  PubMed  Google Scholar 

  7. Venegas B, Gonzalez-Damian J, Celis H, Ortega-Blake I (2003) Amphotericin B channels in the bacterial membrane: role of sterol and temperature. Biophys J 85(4):2323–2332

    Article  CAS  Google Scholar 

  8. Horn R, Korn SJ (1992) Prevention of rundown in electrophysiological recording. Methods Enzy- Mol 207:149–155

    Article  CAS  Google Scholar 

  9. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92(2):145–159

    Article  CAS  Google Scholar 

  10. Marty A, Finkelstein A (1975) Pores formed in lipid bilayer membranes by nystatin, Differences in its one-sided and two-sided action. J Gen Physiol 65(4):515–526

    Article  CAS  Google Scholar 

  11. Hladky SB, Haydon DA (1970) Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature 225(5231):451–453

    Article  CAS  Google Scholar 

  12. Holz R, Finkelstein A (1970) The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol 56(1):125–145

    Article  CAS  Google Scholar 

  13. Ermishkin LN, Kasumov KM, Potzeluyev VM (1976) Single ionic channels induced in lipid bilayers by polyene antibiotics amphotericin B and nystatine. Nature 262(5570):698–699

    Article  CAS  Google Scholar 

  14. Kasumov KM, Borisova MP, Ermishkin LN, Potseluyev VM, Silberstein AY, Vainshtein VA (1979) How do ionic channel properties depend on the structure of polyene antibiotic molecules? Biochim Biophys Acta 551(2):229–237

    Article  CAS  Google Scholar 

  15. de Kruijff B, Demel RA (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Bio- chim Biophys Acta (BBA). Biomembranes 339(1):57–70

    Article  Google Scholar 

  16. de Kruijff B, Gerritsen WJ, Oerlemans A, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Achole-plasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339(1):30–43

    Google Scholar 

  17. de Kruijff B, Gerritsen WJ, Oerlemans A, van Dijck PW, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Acholesplasma laidlawii cells and lecithin liposomes. II. Temperature depen- dence of the polyene antibiotic-sterol complex formation. Biochim Biophys Acta 339(1):44–56

    Article  Google Scholar 

  18. Andreoli TE, Bangham JA, Tosteson DC (1967) The formation and properties of thin lipid membranes from HK and LK sheep red cell lipids. J Gen Physiol 50(6):1729–1749

    Article  CAS  Google Scholar 

  19. Mueller P, Rudin DO (1967) Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics. Biochem Biophys Res Commun 26(4):398–404

    Article  CAS  Google Scholar 

  20. Tosteson DC, Andreoli TE, Tieffenberg M, Cook P (1968) The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes. J Gen Physiol 51(5):373–384

    Article  CAS  Google Scholar 

  21. Ishibashi H, Moorhouse A, Nabekura J (2012) Perforated whole-cell patch-clamp technique: a user’s guide. In: Okada Y (ed) Patch clamp techniques. Springer, Japan, pp 71–83

    Chapter  Google Scholar 

  22. Fu LY, Wang F, Chen XS, Zhou HY, Yao WX, Xia GJ, Jiang MX (2003) Perforated patch recording of L-type calcium current with beta- escin in guinea pig ventricular myocytes. Acta Pharmacol Sin 24(11):1094–1098

    PubMed  Google Scholar 

  23. Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch record- ings using amphotericin B. J Neurosci Methods 37(1):15–26

    Article  CAS  Google Scholar 

  24. Abe H, Konishi H, Komiya H, Arichi S (1981) Effects of saikosaponins on biological mem- branes. 3. Ultrastructural studies on effects of saikosaponins on the cell surface. Planta Med 42(4):356–363

    Article  CAS  Google Scholar 

  25. Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 17(5):2002–2008

    Article  CAS  Google Scholar 

  26. Melzig MF, Bader G, Loose R (2001) Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 67(1):43–48

    Article  CAS  Google Scholar 

  27. Podolak I, Galanty A, Sobolewska D (2010) Saponins as cytotoxic agents: a review. Phyto- Chem Rev 9(3):425–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Graziane or Yan Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Graziane, N., Dong, Y. (2022). Perforated Patch. In: Graziane, N., Dong, Y. (eds) Electrophysiological Analysis of Synaptic Transmission. Neuromethods, vol 187. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2589-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2589-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2588-0

  • Online ISBN: 978-1-0716-2589-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics