Skip to main content

General Considerations for In Vivo Exploration of Synaptic Plasticity

  • Protocol
  • First Online:
Electrophysiological Analysis of Synaptic Transmission

Part of the book series: Neuromethods ((NM,volume 187))

  • 343 Accesses

Abstract

Studying synaptic plasticity in a neuron’s in vivo milieu has unparalleled physiological relevance and translational values. Although in vivo and ex vivo recordings share many basic principles as this book has discussed so far, some special considerations must be taken in the experimental design process for in vivo experiments. In this chapter, we will discuss unique advantages of in vivo recording as well as their technical challenges. Furthermore, we will discuss the principles of selecting appropriate recording configurations based on specific experimental variables. We expect at the end of this chapter that the readers will learn to determine whether in vivo preparations are necessary or suitable for the research questions of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kawashima H, Izaki Y, Grace AA, Takita M (2006) Cooperativity between hippocampal–prefrontal short-term plasticity through associative long-term potentiation. Brain Res 1109:37–44

    Article  CAS  PubMed  Google Scholar 

  2. Maroun M, Richter-Levin G (2003) Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci 23:4406–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nabavi S et al (2014) Engineering a memory with LTD and LTP. Nature 511:348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McGarry LM, Carter AG (2016) Inhibitory gating of basolateral amygdala inputs to the prefrontal cortex. J Neurosci 36:9391–9406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gur R, Tendler A, Wagner S (2014) Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala. Biol Psychiatry 76:377–386

    Article  CAS  PubMed  Google Scholar 

  6. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  CAS  PubMed  Google Scholar 

  7. DeWeese R, M. (2007) Whole-cell recording in vivo. Curr Protoc Neurosci 38:6.22.1–6.2215

    Article  Google Scholar 

  8. Abraham WC (2003) How long will long-term potentiation last? Philos Trans R Soc Lond Ser B Biol Sci 358:735–744

    Article  Google Scholar 

  9. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  10. Heynen AJ, Abraham WC, Bear MF (1996) Bidirectional modification of CA1 synapses in the adult hippocampus in vivo. Nature 381:163–166

    Article  CAS  PubMed  Google Scholar 

  11. Cheyne JE, Montgomery JM (2020) The cellular and molecular basis of in vivo synaptic plasticity in rodents. Am J Phys Cell Phys 318:C1264–C1283

    CAS  Google Scholar 

  12. Charpier S, Deniau JM (1997) In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation. Proc Natl Acad Sci 94:7036–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41

    Article  PubMed  Google Scholar 

  14. Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498

    Article  CAS  PubMed  Google Scholar 

  15. Yoo J et al (2020) Long-term intracellular recording of optogenetically-induced electrical activities using vertical nanowire multi electrode srray. Sci Rep 10:4279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Levites Y et al (2015) A human monoclonal IgG that binds aβ assemblies and diverse amyloids exhibits anti-amyloid activities in vitro and in vivo. J Neurosci 35:6265–6276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abraham WC, Logan B, Greenwood JM, Dragunow M (2002) Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J Neurosci 22:9626–9634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang Q, Brecht M, Burgalossi A (2014) Juxtacellular recording and morphological identification of single neurons in freely moving rats. Nat Protoc 9:2369–2381

    Article  CAS  PubMed  Google Scholar 

  19. Humeau Y, Choquet D (2019) The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat Neurosci 22:1536–1543

    Article  CAS  PubMed  Google Scholar 

  20. Doron G, Brecht M (2015) What single-cell stimulation has told us about neural coding. Philos Trans R Soc Lond Ser B Biol Sci 370:20140204

    Article  CAS  Google Scholar 

  21. Qi G, Yang D, Ding C, Feldmeyer D (2020) Unveiling the synaptic function and structure using paired recordings from synaptically coupled neurons. Front Synaptic Neurosci 12

    Google Scholar 

  22. Jouhanneau J-S, Poulet JFA (2019) Multiple two-photon targeted whole-cell patch-clamp recordings from monosynaptically connected neurons in vivo. Front Synaptic Neurosci 11

    Google Scholar 

  23. Kandel ER, Spencer WA, Brinley FJ Jr (1961) Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24:225–242

    Article  CAS  PubMed  Google Scholar 

  24. Kodandaramaiah SB et al (2018) Multi-neuron intracellular recording in vivo via interacting autopatching robots. elife 7:e24656

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kodandaramaiah SB et al (2016) Assembly and operation of the autopatcher for automated intracellular neural recording in vivo. Nat Protoc 11:634–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herreras O (2016) Local field potentials: myths and misunderstandings. Front Neural Circuits 10:101

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jacob V, Brasier DJ, Erchova I, Feldman D, Shulz DE (2007) Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J Neurosci 27:1271–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henze DA et al (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84:390–400

    Article  CAS  PubMed  Google Scholar 

  29. Ghanbari A, Malyshev A, Volgushev M, Stevenson IH (2017) Estimating short-term synaptic plasticity from pre- and postsynaptic spiking. PLoS Comput Biol 13:e1005738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fiáth R et al (2016) Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe. J Neurophysiol 116:2312–2330

    Article  PubMed  PubMed Central  Google Scholar 

  31. Albensi BC, Oliver DR, Toupin J, Odero G (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204:1–13

    Article  PubMed  Google Scholar 

  32. Cardin JA et al (2010) Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat Protoc 5:7–254

    Article  CAS  Google Scholar 

  33. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez G et al (2019) Disruption of NMDAR function prevents normal experience-dependent homeostatic synaptic plasticity in mouse primary visual cortex. J Neurosci 39:7664–7673

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wegener S et al (2018) Defective Synapse Maturation and Enhanced Synaptic Plasticity in Shank2 Δex7(−/−) Mice. eNeuro 5

    Google Scholar 

  36. Manahan-Vaughan D, Buschler A (2012) Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci 6

    Google Scholar 

  37. Gerstner JR, Yin JCP (2010) Circadian rhythms and memory formation. Nat Rev Neurosci 11:577–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hyer MM, Phillips LL, Neigh GN (2018) Sex differences in synaptic plasticity: hormones and beyond. Front Mol Neurosci 11:266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bear MF (1996) A synaptic basis for memory storage in the cerebral cortex. Proc Natl Acad Sci 93:13453–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clapp WC, Eckert MJ, Teyler TJ, Abraham WC (2006) Rapid visual stimulation induces N-methyl-D-aspartate receptor-dependent sensory long-term potentiation in the rat cortex. Neuroreport 17:511–515

    Article  CAS  PubMed  Google Scholar 

  41. Mégevand P et al (2009) Long-term plasticity in mouse sensorimotor circuits after rhythmic whisker stimulation. J Neurosci 29:5326–5335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Roggeri L, Rivieccio B, Rossi P, D'Angelo E (2008) Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. J Neurosci 28:6354–6359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palmer LM et al (2014) NMDA spikes enhance action potential generation during sensory input. Nat Neurosci 17:383–390

    Article  CAS  PubMed  Google Scholar 

  44. Noguchi J et al (2011) In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J Physiol 589:2447–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dondzillo A, Thornton JL, Tollin DJ, Klug A (2013) Manufacturing and using piggy-back multibarrel electrodes for in vivo pharmacological manipulations of neural responses. J Vis Exp e4358

    Google Scholar 

  46. Sáez M, Ketzef M, Alegre-Cortés J, Reig R, Silberberg G (2018) A new micro-holder device for local drug delivery during in vivo whole-cell recordings. Neuroscience 381:115–123

    Article  PubMed  CAS  Google Scholar 

  47. Thiele A, Delicato LS, Roberts MJ, Gieselmann MA (2006) A novel electrode-pipette design for simultaneous recording of extracellular spikes and iontophoretic drug application in awake behaving monkeys. J Neurosci Methods 158:207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ketzef M et al (2017) Dopamine depletion impairs bilateral sensory processing in the striatum in a pathway-dependent manner. Neuron 94:855-865. e5

    Article  PubMed  CAS  Google Scholar 

  49. Katz Y, Yizhar O, Staiger J, Lampl I (2013) Optopatcher—an electrode holder for simultaneous intracellular patch-clamp recording and optical manipulation. J Neurosci Methods 214:113–117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiyu Zhu or Anthony A. Grace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, X., Grace, A.A. (2022). General Considerations for In Vivo Exploration of Synaptic Plasticity. In: Graziane, N., Dong, Y. (eds) Electrophysiological Analysis of Synaptic Transmission. Neuromethods, vol 187. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2589-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2589-7_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2588-0

  • Online ISBN: 978-1-0716-2589-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics