Skip to main content

Part of the book series: Neuromethods ((NM,volume 187))

  • 318 Accesses

Abstract

So far, we have discussed patch clamp procedures that target the neuronal soma. However, electrical properties of neurons are critically influenced by dendrites, which not only make up a large portion of neuron’s surface area but also receive a large proportion of synaptic inputs. The electrical properties of dendritic membrane and somatic membrane can be very different. Therefore, recording electrical properties directly from dendrites is desired in some experimental designs. Luckily, skilled electrophysiologists have optimized electrophysiological protocols that allow neuronal dendritic recording. Such recordings have provided important information regarding voltage-gated ion channel distribution and function (Bekkers, J Physiol 525(Pt 3):611–620, 2000; Hoffman et al, Nature 387(6636):869–875, 1997; Korngreen, Sakmann, J Physiol 525(Pt 3):621–639, 2000; Magee, J Neurosci 18(19):7613–7624, 1998; Stuart, Hausser, Neuron 13(3):703–712, 1994), differences between somatic and dendritic membrane channel properties (Magee, Cook, Nat Neurosci 3(9):895–903, 2000; Williams, Stuart, Science 295(5561):1907–1910, 2002), and synaptic integration of backpropagating action potentials combined with synaptic potentials (Magee, Johnston, Science 275(5297):209–213, 1997; Stuart, Hausser, Nat Neurosci 4(1):63–71, 2001; Watanabe et al, Proc Natl Acad Sci U S A 99(12):8366–8371, 2002). The purpose of this chapter is to provide the beginning electrophysiologist with the necessary information required to maximize their success rate for dendritic recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bekkers JM (2000) Distribution and activation of voltage-gated potassium channels in cell- attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol 525(Pt 3):611–620

    Article  CAS  Google Scholar 

  2. Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875

    Article  CAS  Google Scholar 

  3. Korngreen A, Sakmann B (2000) Voltage- gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J Physiol 525(Pt 3):621–639

    Article  CAS  Google Scholar 

  4. Magee JC (1998) Dendritic hyperpolarization- activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18(19):7613–7624

    Article  CAS  Google Scholar 

  5. Stuart G, Hausser M (1994) Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron 13(3):703–712

    Article  CAS  Google Scholar 

  6. Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3(9):895–903

    Article  CAS  Google Scholar 

  7. Williams SR, Stuart GJ (2002) Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295(5561):1907–1910

    Article  CAS  Google Scholar 

  8. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275(5297):209–213

    Article  CAS  Google Scholar 

  9. Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4(1):63–71

    Article  CAS  Google Scholar 

  10. Watanabe S, Hoffman DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long- term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A 99(12):8366–8371

    Article  CAS  Google Scholar 

  11. Davie JT, Kole MH, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, Hausser M (2006) Dendritic patch-clamp recording. Nat Protoc 1(3):1235–1247

    Article  CAS  Google Scholar 

  12. Larkum ME, Senn W, Luscher HR (2004) Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb Cortex 14(10):1059–1070

    Article  Google Scholar 

  13. Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10(2):206–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas Graziane or Yan Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Graziane, N., Dong, Y. (2022). Dendritic Patch. In: Graziane, N., Dong, Y. (eds) Electrophysiological Analysis of Synaptic Transmission. Neuromethods, vol 187. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2589-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2589-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2588-0

  • Online ISBN: 978-1-0716-2589-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics