Skip to main content

Generation of Stable and Unmarked Conditional Mutants in Pseudomonas aeruginosa

  • Protocol
  • First Online:
Lipopolysaccharide Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2548))

Abstract

The functional and physiological characterization of bacterial genes required for growth and/or cell survival is limited by the inability to generate deletion mutants lacking the specific gene of interest. This limitation can be circumvented by generating conditional mutants in which the loss of the endogenous copy of the gene is compensated by the introduction of the wild-type allele under the control of an inducible promoter, which allows for tightly regulated expression of the gene of interest. Besides the confirmation and/or functional investigation of essential genes, conditional mutants can also be useful to investigate the effect of finely controlled expression of nonessential genes. In this chapter, we describe a method that can be used to generate stable and unmarked conditional mutants in Pseudomonas aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. https://doi.org/10.1038/msb4100050

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O'Reilly M, O'Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100:4678–4683. https://doi.org/10.1073/pnas.0730515100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906. https://doi.org/10.1126/science.285.5429.901

    Article  CAS  PubMed  Google Scholar 

  4. Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, Zhang R (2021) DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res 49:D677–D686. https://doi.org/10.1093/nar/gkaa917

    Article  CAS  PubMed  Google Scholar 

  5. Kwon YM, Ricke SC, Mandal RK (2016) Transposon sequencing: methods and expanding applications. Appl Microbiol Biotechnol 100:31–43. https://doi.org/10.1007/s00253-015-7037-8

    Article  CAS  PubMed  Google Scholar 

  6. Chao MC, Abel S, Davis BM, Waldor MK (2016) The design and analysis of transposon insertion sequencing experiments. Nat Rev Microbiol 14:119–128. https://doi.org/10.1038/nrmicro.2015.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng J, Su S, Lin X, Hassett DJ, Lu LJ (2013) A statistical framework for improving genomic annotations of prokaryotic essential genes. PLoS One 8:e58178. https://doi.org/10.1371/journal.pone.0058178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandez-Pinar R, Lo Sciuto A, Rossi A, Ranucci S, Bragonzi A, Imperi F (2015) In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa. Sci Rep 5:17593. https://doi.org/10.1038/srep17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cain AK, Barquist L, Goodman AL, Paulsen IT, Parkhill J, van Opijnen T (2020) A decade of advances in transposon-insertion sequencing. Nat Rev Genet 21:526–540. https://doi.org/10.1038/s41576-020-0244-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Group WHOPPLW (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  11. Laborda P, Sanz-Garcia F, Hernando-Amado S, Martinez JL (2021) Pseudomonas aeruginosa: an antibiotic resilient pathogen with environmental origin. Curr Opin Microbiol 64:125–132. https://doi.org/10.1016/j.mib.2021.09.010

    Article  CAS  PubMed  Google Scholar 

  12. Lo Sciuto A, Fernandez-Pinar R, Bertuccini L, Iosi F, Superti F, Imperi F (2014) The periplasmic protein TolB as a potential drug target in Pseudomonas aeruginosa. PLoS One 9:e103784. https://doi.org/10.1371/journal.pone.0103784

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lo Sciuto A, Martorana AM, Fernandez-Pinar R, Mancone C, Polissi A, Imperi F (2018) Pseudomonas aeruginosa LptE is crucial for LptD assembly, cell envelope integrity, antibiotic resistance and virulence. Virulence 9:1718–1733. https://doi.org/10.1080/21505594.2018.1537730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scala R, Di Matteo A, Coluccia A, Lo Sciuto A, Federici L, Travaglini-Allocatelli C, Visca P, Silvestri R, Imperi F (2020) Mutational analysis of the essential lipopolysaccharide-transport protein LptH of Pseudomonas aeruginosa to uncover critical oligomerization sites. Sci Rep 10:11276. https://doi.org/10.1038/s41598-020-68054-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liss L (1987) New M13 host: DH5 F′ competent cells. Focus 9:13

    Google Scholar 

  16. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–790

    Article  CAS  Google Scholar 

  17. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319. https://doi.org/10.1128/jb.178.5.1310-1319.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86. https://doi.org/10.1016/s0378-1119(98)00130-9

    Article  CAS  PubMed  Google Scholar 

  19. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  20. Mdluli KE, Witte PR, Kline T, Barb AW, Erwin AL, Mansfield BE, McClerren AL, Pirrung MC, Tumey LN, Warrener P, Raetz CR, Stover CK (2006) Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:2178–2184. https://doi.org/10.1128/AAC.00140-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72. https://doi.org/10.1006/plas.1999.1441

    Article  CAS  PubMed  Google Scholar 

  22. Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE, Tseng BS, Lin C, Irie Y, Storek KM, Yang JJ, Siehnel RJ, Howell PL, Singh PK, Tolker-Nielsen T, Parsek MR, Schweizer HP, Harrison JJ (2015) Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc 10:1820–1841. https://doi.org/10.1038/nprot.2015.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S, Singh PK, Manoil C (2015) General and condition-specific essential functions of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:5189–5194. https://doi.org/10.1073/pnas.1422186112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M (2015) Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc Natl Acad Sci U S A 112:4110–4115. https://doi.org/10.1073/pnas.1419677112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pasqua M, Visaggio D, Lo Sciuto A, Genah S, Banin E, Visca P, Imperi F (2017) Ferric uptake regulator fur is conditionally essential in Pseudomonas aeruginosa. J Bacteriol 199:e00472–e00417. https://doi.org/10.1128/JB.00472-17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ, Li L, Penaranda C, Lander ES, Shoresh N, Hung DT (2019) Defining the core essential genome of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 116:10072–10080. https://doi.org/10.1073/pnas.1900570116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research on essential genes in our laboratory was supported by the Pasteur Institute-Cenci Bolognetti Foundation, PRIN 2020 (grant protocol 20208LLXEJ), the Excellence Departments grant from the Italian Ministry of Education, University and Research (MIUR, Italy) (Art. 1, commi 314-337 Legge 232/2016), and the Regione Lazio (“Gruppi di Ricerca 2020,” POR A0375E0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Imperi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lo Sciuto, A., Spinnato, M.C., Pasqua, M., Imperi, F. (2022). Generation of Stable and Unmarked Conditional Mutants in Pseudomonas aeruginosa. In: Sperandeo, P. (eds) Lipopolysaccharide Transport. Methods in Molecular Biology, vol 2548. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2581-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2581-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2580-4

  • Online ISBN: 978-1-0716-2581-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics