Skip to main content

Biological Rhythm Measurements in Rodents

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Neuromethods ((NM,volume 186))

Abstract

Rodent studies have been critical to exposing and defining fundamental properties of biological rhythms and underlying timing systems. Studying biological timekeeping in animals is a valid curiosity in itself, and studies in rodents are also often used to model the human condition where human studies cannot be undertaken due to practical or ethical concerns. Translation of rodent models has added substantially to our understanding of human chronobiology and has exposed properties and mechanisms of mammalian biological timekeeping that are more obvious in rodents than humans, driving the chronobiological research frontier forward. In this chapter, we describe how properties of biological rhythms can be accurately described and interrogated in rodent models and how new methods and insights can continue to drive chronobiological discovery science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74(2):246–260. https://doi.org/10.1016/j.neuron.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  2. Hastings MH, Maywood ES, Brancaccio M (2019) The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology 8(1):13

    Article  CAS  Google Scholar 

  3. van der Veen DR, Riede SJ, Heideman PD, Hau M, van der Vinne V, Hut RA (2017) Flexible clock systems: adjusting the temporal programme. Philos Trans R Soc Lond Ser B Biol Sci 372(1734). https://doi.org/10.1098/rstb.2016.0254

  4. Ericsson AC, Crim MJ, Franklin CL (2013) A brief history of animal modeling. Mo Med 110(3):201–205

    PubMed  PubMed Central  Google Scholar 

  5. Jensen TL, Kiersgaard MK, Sørensen DB, Mikkelsen LF (2013) Fasting of mice: a review. Lab Anim 47(4):225–240. https://doi.org/10.1177/0023677213501659

    Article  CAS  PubMed  Google Scholar 

  6. Curie T, Mongrain V, Dorsaz S, Mang GM, Emmenegger Y, Franken P (2013) Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36(3):311–323. https://doi.org/10.5665/sleep.2440

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15(5 Pt 1):3526–3538. https://doi.org/10.1523/jneurosci.15-05-03526.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flynn BP, Conway-Campbell BL, Lightman SL (2018) The emerging importance of ultradian glucocorticoid rhythms within metabolic pathology. Ann Endocrinol (Paris) 79(3):112–114. https://doi.org/10.1016/j.ando.2018.03.003

    Article  Google Scholar 

  9. Gerkema MP, van der Leest F (1991) Ongoing ultradian activity rhythms in the common vole, Microtus arvalis, during deprivations of food, water and rest. J Comp Physiol A 168(5):591–597. https://doi.org/10.1007/BF00215081

    Article  CAS  PubMed  Google Scholar 

  10. van der Veen DR, Gerkema MP (2017) Unmasking ultradian rhythms in gene expression. FASEB J 31(2):743–750. https://doi.org/10.1096/fj.201600872R

    Article  PubMed  Google Scholar 

  11. van der Veen DR, Minh NL, Gos P, Arneric M, Gerkema MP, Schibler U (2006) Impact of behavior on central and peripheral circadian clocks in the common vole Microtus arvalis, a mammal with ultradian rhythms. Proc Natl Acad Sci U S A 103(9):3393–3398. https://doi.org/10.1073/pnas.0507825103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szymanski JS (1918) Die Verteilung der Ruhe- und Aktivitätsperioden bei weissen Ratten und Tanzmäusen. Pflugers Arch Gesamte Physiol Menschen Tiere 171(1):324–347. https://doi.org/10.1007/BF01722097

    Article  Google Scholar 

  13. Johnson MS (1926) Activity and distribution of certain wild mice in relation to biotic communities1. J Mammal 7(4):245–277. https://doi.org/10.2307/1373575

    Article  Google Scholar 

  14. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents I. J Comp Physiol 106(3):223–252. https://doi.org/10.1007/BF01417856

    Article  Google Scholar 

  15. Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents II. J Comp Physiol 106(3):253–266. https://doi.org/10.1007/BF01417857

    Article  Google Scholar 

  16. Daan S, Pittendrigh CS (1976) A functional analysis of circadian pacemakers in nocturnal rodents III. J Comp Physiol 106(3):267–290. https://doi.org/10.1007/BF01417858

    Article  Google Scholar 

  17. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents IV. J Comp Physiol 106(3):291–331. https://doi.org/10.1007/BF01417859

    Article  Google Scholar 

  18. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents V. J Comp Physiol 106(3):333–355. https://doi.org/10.1007/BF01417860

    Article  Google Scholar 

  19. Ralph M, Foster R, Davis F, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978. https://doi.org/10.1126/science.2305266

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz WJ, Zimmerman P (1990) Circadian timekeeping in BALB/c and C57BL/6 inbred mouse strains. J Neurosci 10(11):3685–3694. https://doi.org/10.1523/jneurosci.10-11-03685.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kennaway DJ, Voultsios A, Varcoe TJ, Moyer RW (2002) Melatonin in mice: rhythms, response to light, adrenergic stimulation, and metabolism. Am J Phys Regul Integr Comp Phys 282(2):R358–R365. https://doi.org/10.1152/ajpregu.00360.2001

    Article  CAS  Google Scholar 

  22. Pévet P (2003) Melatonin: from seasonal to circadian signal. J Neuroendocrinol 15(4):422–426. https://doi.org/10.1046/j.1365-2826.2003.01017.x

    Article  PubMed  Google Scholar 

  23. Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2(9):702–715. https://doi.org/10.1038/35088576

    Article  CAS  PubMed  Google Scholar 

  24. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci 111(45):16219–16224. https://doi.org/10.1073/pnas.1408886111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughey JJ, Butte AJ (2016) Differential phasing between circadian clocks in the brain and peripheral organs in humans. J Biol Rhythm 31(6):588–597. https://doi.org/10.1177/0748730416668049

    Article  CAS  Google Scholar 

  26. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961. https://doi.org/10.1101/gad.183500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291(5503):490–493. https://doi.org/10.1126/science.291.5503.490

    Article  CAS  PubMed  Google Scholar 

  28. Tsang AH, Astiz M, Leinweber B, Oster H (2017) Rodent models for the analysis of tissue clock function in metabolic rhythms research. Front Endocrinol 8:27

    Article  Google Scholar 

  29. Challet E, Pitrosky B, Sicard B, Malan A, Pévet P (2002) Circadian organization in a diurnal rodent, Arvicanthis ansorgei Thomas 1910: chronotypes, responses to constant lighting conditions, and photoperiodic changes. J Biol Rhythm 17(1):52–64. https://doi.org/10.1177/074873002129002339

    Article  Google Scholar 

  30. Hut RA, van Oort BEH, Daan S (1999) Natural entrainment without dawn and dusk: the case of the European ground squirrel (Spermophilus citellus). J Biol Rhythm 14(4):290–299. https://doi.org/10.1177/074873099129000704

    Article  CAS  Google Scholar 

  31. Abe H, Honma S, Shinohara K, Honma KI (1995) Circadian modulation in photic induction of Fos-like immunoreactivity in the suprachiasmatic nucleus cells of diurnal chipmunk, Eutamias asiaticus. J Comp Physiol A 176(2):159–167. https://doi.org/10.1007/bf00239919

    Article  CAS  PubMed  Google Scholar 

  32. Levy O, Dayan T, Kronfeld-Schor N (2007) The relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study. Chronobiol Int 24(4):599–613. https://doi.org/10.1080/07420520701534640

    Article  PubMed  Google Scholar 

  33. Labyak SE, Lee TM, Goel N (1997) Rhythm chronotypes in a diurnal rodent, Octodon degus. Am J Phys 273(3 Pt 2):R1058–R1066. https://doi.org/10.1152/ajpregu.1997.273.3.R1058

    Article  CAS  Google Scholar 

  34. Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H (2012) In search of a temporal niche: environmental factors. Prog Brain Res 199:281–304. https://doi.org/10.1016/b978-0-444-59427-3.00017-4

    Article  PubMed  Google Scholar 

  35. Blum ID, Zhu L, Moquin L, Kokoeva MV, Gratton A, Giros B, Storch KF (2014) A highly-tunable dopaminergic oscillator generates ultradian rhythms of behavioral arousal. eLife 3. https://doi.org/10.7554/eLife.05105

  36. Gerkema MP, Groos GA, Daan S (1990) Differential elimination of circadian and ultradian rhythmicity by hypothalamic lesions in the common vole, Microtus arvalis. J Biol Rhythm 5(2):81–95. https://doi.org/10.1177/074873049000500201

    Article  CAS  Google Scholar 

  37. van der Veen DR, Saaltink DJ, Gerkema MP (2011) Behavioral responses to combinations of timed light, food availability, and ultradian rhythms in the common vole (Microtus arvalis). Chronobiol Int 28(7):563–571. https://doi.org/10.3109/07420528.2011.591953

    Article  PubMed  Google Scholar 

  38. Dowse H, Umemori J, Koide T (2010) Ultradian components in the locomotor activity rhythms of the genetically normal mouse, Mus musculus. J Exp Biol 213(Pt 10):1788–1795. https://doi.org/10.1242/jeb.038877

    Article  PubMed  Google Scholar 

  39. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103(7):1009–1017. https://doi.org/10.1016/s0092-8674(00)00205-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630. https://doi.org/10.1038/19323

    Article  PubMed  Google Scholar 

  41. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159):719–725

    Article  CAS  Google Scholar 

  42. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105(5):683–694

    Article  CAS  Google Scholar 

  43. Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A (1999) The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400(6740):169–173. https://doi.org/10.1038/22118

    Article  CAS  PubMed  Google Scholar 

  44. Schwartz WJ, Zimmerman P (1991) Lesions of the suprachiasmatic nucleus disrupt circadian locomotor rhythms in the mouse. Physiol Behav 49(6):1283–1287

    Article  CAS  Google Scholar 

  45. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68(9):2112–2116. https://doi.org/10.1073/pnas.68.9.2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241(4870):1225–1227. https://doi.org/10.1126/science.3413487

    Article  CAS  PubMed  Google Scholar 

  47. Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30(2):525–536. https://doi.org/10.1016/s0896-6273(01)00302-6

    Article  CAS  PubMed  Google Scholar 

  48. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci U S A 96(21):12114–12119. https://doi.org/10.1073/pnas.96.21.12114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DeBruyne JP, Weaver DR, Reppert SM (2007) CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nat Neurosci 10(5):543–545. https://doi.org/10.1038/nn1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang G, Chen L, Grant GR, Paschos G, Song WL, Musiek ES, Lee V, McLoughlin SC, Grosser T, Cotsarelis G, FitzGerald GA (2016) Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci Transl Med 8(324):324–316. https://doi.org/10.1126/scitranslmed.aad3305

    Article  CAS  Google Scholar 

  51. Yu EA, Weaver DR (2011) Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging (Albany NY) 3(5):479–493. https://doi.org/10.18632/aging.100323

    Article  CAS  Google Scholar 

  52. Hasan S, van der Veen DR, Winsky-Sommerer R, Hogben A, Laing EE, Koentgen F, Dijk DJ, Archer SN (2014) A human sleep homeostasis phenotype in mice expressing a primate-specific PER3 variable-number tandem-repeat coding-region polymorphism. FASEB J 28(6):2441–2454. https://doi.org/10.1096/fj.13-240135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288(5465):483–492. https://doi.org/10.1126/science.288.5465.483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee HM, Chen R, Kim H, Etchegaray JP, Weaver DR, Lee C (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci U S A 108(39):16451–16456. https://doi.org/10.1073/pnas.1107178108

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chavan R, Feillet C, Costa SS, Delorme JE, Okabe T, Ripperger JA, Albrecht U (2016) Liver-derived ketone bodies are necessary for food anticipation. Nat Commun 7:10580. https://doi.org/10.1038/ncomms10580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Debruyne JP, Noton E, Lambert CM, Maywood ES, Weaver DR, Reppert SM (2006) A clock shock: mouse CLOCK is not required for circadian oscillator function. Neuron 50(3):465–477. https://doi.org/10.1016/j.neuron.2006.03.041

    Article  CAS  PubMed  Google Scholar 

  57. Etchegaray JP, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, Yu EA, Reppert SM, Weaver DR (2009) Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol Cell Biol 29(14):3853–3866. https://doi.org/10.1128/mcb.00338-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J, Brown TM, Sládek M, Semikhodskii AS, Glossop NRJ, Piggins HD, Chesham JE, Bechtold DA, Yoo SH, Takahashi JS, Virshup DM, Boot-Handford RP, Hastings MH, Loudon ASI (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58(1):78–88. https://doi.org/10.1016/j.neuron.2008.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Storch KF, Paz C, Signorovitch J, Raviola E, Pawlyk B, Li T, Weitz CJ (2007) Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130(4):730–741. https://doi.org/10.1016/j.cell.2007.06.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346. https://doi.org/10.1073/pnas.0308709101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smyllie NJ, Pilorz V, Boyd J, Meng QJ, Saer B, Chesham JE, Maywood ES, Krogager TP, Spiller DG, Boot-Handford R, White MR, Hastings MH, Loudon AS (2016) Visualizing and quantifying intracellular behavior and abundance of the core circadian clock protein PERIOD2. Curr Biol 26(14):1880–1886. https://doi.org/10.1016/j.cub.2016.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shan Y, Abel JH, Li Y, Izumo M, Cox KH, Jeong B, Yoo SH, Olson DP, Doyle FJ 3rd, Takahashi JS (2020) Dual-color single-cell imaging of the suprachiasmatic nucleus reveals a circadian role in network synchrony. Neuron 108(1):164–179.e167. https://doi.org/10.1016/j.neuron.2020.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith CB, van der Vinne V, McCartney E, Stowie AC, Leise TL, Martin-Burgos B, Molyneux PC, Garbutt LA, Brodsky MH, Davidson AJ, Harrington ME, Dallmann R, Weaver DR (2021) Cell-type specific circadian bioluminescence rhythms recorded from Dbp reporter mice reveal circadian oscillator misalignment. bioRxiv:2021.2004.2004.438413. https://doi.org/10.1101/2021.04.04.438413

  64. Schmidt TM, Chen SK, Hattar S (2011) Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34(11):572–580. https://doi.org/10.1016/j.tins.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8(4):476–483. https://doi.org/10.1038/nn1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, Hu Z, Liu X, Waschek JA (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285(5):R939–R949. https://doi.org/10.1152/ajpregu.00200.2003

    Article  CAS  PubMed  Google Scholar 

  67. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, Sheward WJ, Morrison CF, Dorin JR, Piggins HD, Reubi JC, Kelly JS, Maywood ES, Hastings MH (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109(4):497–508. https://doi.org/10.1016/s0092-8674(02)00736-5

    Article  CAS  PubMed  Google Scholar 

  68. Maywood ES, Reddy AB, Wong GK, O'Neill JS, O'Brien JA, McMahon DG, Harmar AJ, Okamura H, Hastings MH (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr Biol 16(6):599–605. https://doi.org/10.1016/j.cub.2006.02.023

    Article  CAS  PubMed  Google Scholar 

  69. Aston-Jones G, Deisseroth K (2013) Recent advances in optogenetics and pharmacogenetics. Brain Res 1511:1–5. https://doi.org/10.1016/j.brainres.2013.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Collins B, Pierre-Ferrer S, Muheim C, Lukacsovich D, Cai Y, Spinnler A, Herrera CG, Wen S, Winterer J, Belle MDC, Piggins HD, Hastings M, Loudon A, Yan J, Földy C, Adamantidis A, Brown SA (2020) Circadian VIPergic neurons of the suprachiasmatic nuclei sculpt the sleep-wake cycle. Neuron 108(3):486–499.e485. https://doi.org/10.1016/j.neuron.2020.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, Doyle FJ 3rd, Herzog ED (2018) Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron 99(3):555–563.e555. https://doi.org/10.1016/j.neuron.2018.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C (2019) Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 42(5). https://doi.org/10.1093/sleep/zsz023

  73. Mardia KV (1972) Statistics of directional data. Academic Press, London

    Google Scholar 

  74. Sokolove PG, Bushell WN (1978) The chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 72(1):131–160. https://doi.org/10.1016/0022-5193(78)90022-x

    Article  CAS  PubMed  Google Scholar 

  75. Ruf T (1999) The lomb-scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biol Rhythm Res 30(2):178–201. https://doi.org/10.1076/brhm.30.2.178.1422

    Article  Google Scholar 

  76. Nelson W, Tong YL, Lee JK, Halberg F (1979) Methods for cosinor-rhythmometry. Chronobiologia 6(4):305–323

    CAS  PubMed  Google Scholar 

  77. Refinetti R, Lissen GC, Halberg F (2007) Procedures for numerical analysis of circadian rhythms. Biol Rhythm Res 38(4):275–325. https://doi.org/10.1080/09291010600903692

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hughes ME, Abruzzi KC, Allada R, Anafi R, Arpat AB, Asher G, Baldi P, de Bekker C, Bell-Pedersen D, Blau J, Brown S, Ceriani MF, Chen Z, Chiu JC, Cox J, Crowell AM, DeBruyne JP, Dijk D-J, DiTacchio L, Doyle FJ, Duffield GE, Dunlap JC, Eckel-Mahan K, Esser KA, FitzGerald GA, Forger DB, Francey LJ, Fu Y-H, Gachon F, Gatfield D, de Goede P, Golden SS, Green C, Harer J, Harmer S, Haspel J, Hastings MH, Herzel H, Herzog ED, Hoffmann C, Hong C, Hughey JJ, Hurley JM, de la Iglesia HO, Johnson C, Kay SA, Koike N, Kornacker K, Kramer A, Lamia K, Leise T, Lewis SA, Li J, Li X, Liu AC, Loros JJ, Martino TA, Menet JS, Merrow M, Millar AJ, Mockler T, Naef F, Nagoshi E, Nitabach MN, Olmedo M, Nusinow DA, Ptáček LJ, Rand D, Reddy AB, Robles MS, Roenneberg T, Rosbash M, Ruben MD, Rund SSC, Sancar A, Sassone-Corsi P, Sehgal A, Sherrill-Mix S, Skene DJ, Storch K-F, Takahashi JS, Ueda HR, Wang H, Weitz C, Westermark PO, Wijnen H, Xu Y, Wu G, Yoo S-H, Young M, Zhang EE, Zielinski T, Hogenesch JB (2017) Guidelines for genome-scale analysis of biological rhythms. J Biol Rhythm 32(5):380–393. https://doi.org/10.1177/0748730417728663

    Article  CAS  Google Scholar 

  79. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118(3062):273–274. https://doi.org/10.1126/science.118.3062.273

    Article  CAS  PubMed  Google Scholar 

  80. Lightman SL, Wiles CC, Atkinson HC, Henley DE, Russell GM, Leendertz JA, McKenna MA, Spiga F, Wood SA, Conway-Campbell BL (2008) The significance of glucocorticoid pulsatility. Eur J Pharmacol 583(2–3):255–262. https://doi.org/10.1016/j.ejphar.2007.11.073

    Article  CAS  PubMed  Google Scholar 

  81. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB (2009) Harmonics of circadian gene transcription in mammals. PLoS Genet 5(4):e1000442. https://doi.org/10.1371/journal.pgen.1000442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leise TL, Harrington ME (2011) Wavelet-based time series analysis of circadian rhythms. J Biol Rhythm 26(5):454–463. https://doi.org/10.1177/0748730411416330

    Article  Google Scholar 

  83. Herzog ED, Aton SJ, Numano R, Sakaki Y, Tei H (2004) Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J Biol Rhythm 19(1):35–46. https://doi.org/10.1177/0748730403260776

    Article  Google Scholar 

  84. Nunemaker CS, Satin LS (2014) Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 47(1):49–63. https://doi.org/10.1007/s12020-014-0212-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsang AH, Barclay JL, Oster H (2014) Interactions between endocrine and circadian systems. J Mol Endocrinol 52(1):R1–16. https://doi.org/10.1530/jme-13-0118

  86. Ims RA (1990) On the adaptive value of reproductive synchrony as a predator-swamping strategy. Am Nat 136(4):485–498. https://doi.org/10.1086/285109

    Article  Google Scholar 

  87. Gerkema MP, Verhulst S (1990) Warning against an unseen predator: a functional aspect of synchronous feeding in the common vole, Microtus arvalis. Anim Behav 40(6):1169–1178. https://doi.org/10.1016/S0003-3472(05)80183-6

    Article  Google Scholar 

  88. Gerkema MP (2002) Ultradian rhythms. In: Kumar V (ed) Biological rhythms. Narosa Publishing House, New Delhi, pp 207–215

    Chapter  Google Scholar 

  89. Paul MJ, Indic P, Schwartz WJ (2015) Social synchronization of circadian rhythmicity in female mice depends on the number of cohabiting animals. Biol Lett 11(6):20150204. https://doi.org/10.1098/rsbl.2015.0204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Crowley M, Bovet J (1980) Social synchronization of circadian rhythms in deer mice (Peromyscus maniculatus). Behav Ecol Sociobiol 7(2):99–105. https://doi.org/10.1007/BF00299514

    Article  Google Scholar 

  91. Mrosovsky N (1988) Phase response curves for social entrainment. J Comp Physiol A 162(1):35–46. https://doi.org/10.1007/BF01342701

    Article  CAS  PubMed  Google Scholar 

  92. Schank JC, McClintock MK (1992) A coupled-oscillator model of ovarian-cycle synchrony among female rats. J Theor Biol 157(3):317–362. https://doi.org/10.1016/S0022-5193(05)80614-9

    Article  CAS  PubMed  Google Scholar 

  93. Gattermann R, Ulbrich K, Weinandy R (2002) Asynchrony in the estrous cycles of golden hamsters (Mesocricetus auratus). Horm Behav 42(1):70–77. https://doi.org/10.1006/hbeh.2002.1800

    Article  PubMed  Google Scholar 

  94. Korslund L (2006) Activity of root voles (Microtus oeconomus) under snow: social encounters synchronize individual activity rhythms. Behav Ecol Sociobiol 61(2):255. https://doi.org/10.1007/s00265-006-0256-3

    Article  Google Scholar 

  95. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206. https://doi.org/10.1016/0006-8993(72)90054-6

    Article  CAS  PubMed  Google Scholar 

  96. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586. https://doi.org/10.1073/pnas.69.6.1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16(4):415–429. https://doi.org/10.3109/07420529908998717

    Article  CAS  PubMed  Google Scholar 

  98. Mrosovsky N (1996) Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc 71(3):343–372. https://doi.org/10.1111/j.1469-185x.1996.tb01278.x

    Article  CAS  PubMed  Google Scholar 

  99. Peirson SN, Brown LA, Pothecary CA, Benson LA, Fisk AS (2018) Light and the laboratory mouse. J Neurosci Methods 300:26–36. https://doi.org/10.1016/j.jneumeth.2017.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  100. McGuire RA, Rand WM, Wurtman RJ (1973) Entrainment of the body temperature rhythm in rats: effect of color and intensity of environmental light. Science 181(4103):956–957. https://doi.org/10.1126/science.181.4103.956

    Article  CAS  PubMed  Google Scholar 

  101. Hofstetter JR, Hofstetter AR, Hughes AM, Mayeda AR (2005) Intermittent long-wavelength red light increases the period of daily locomotor activity in mice. J Circadian Rhythms 3:8. https://doi.org/10.1186/1740-3391-3-8

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang Z, Wang H-J, Wang D-R, Qu W-M, Huang Z-L (2017) Red light at intensities above 10 lx alters sleep–wake behavior in mice. Light Sci Appl 6(5):e16231–e16231. https://doi.org/10.1038/lsa.2016.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Aschoff J (1965) In: Aschoff J (ed) Response curves in circadian periodicity. Circadian Clocks, pp 95–111

    Google Scholar 

  104. Aschoff J, Daan S, Honma K-I (1982) Zeitgebers, entrainment, and masking: some unsettled questions. In: Vertebrate circadian systems. Springer, Berlin Heidelberg, pp 13–24

    Chapter  Google Scholar 

  105. Daan S (2000) The Colin S. Pittendrigh Lecture. Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. J Biol Rhythm 15(3):195–207. https://doi.org/10.1177/074873040001500301

    Article  CAS  Google Scholar 

  106. Aschoff J (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol 25:11–28. https://doi.org/10.1101/sqb.1960.025.01.004

    Article  CAS  PubMed  Google Scholar 

  107. van der Veen DR, Archer SN (2010) Light-dependent behavioral phenotypes in PER3-deficient mice. J Biol Rhythm 25(1):3–8. https://doi.org/10.1177/0748730409356680

    Article  Google Scholar 

  108. Martynhak BJ, Hogben AL, Zanos P, Georgiou P, Andreatini R, Kitchen I, Archer SN, von Schantz M, Bailey A, van der Veen DR (2017) Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3(−/−) mice, but not wild-type mice. Sci Rep 7:40399. https://doi.org/10.1038/srep40399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Van der Veen DR, Laing EE, Bae SE, Johnston JD, Dijk DJ, Archer SN (2020) A topological cluster of differentially regulated genes in mice lacking PER3. Front Mol Neurosci 13:15. https://doi.org/10.3389/fnmol.2020.00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18(2):171–195. https://doi.org/10.1016/0149-7634(94)90023-x

    Article  CAS  PubMed  Google Scholar 

  111. Stephan FK (2002) The "other" circadian system: food as a Zeitgeber. J Biol Rhythm 17(4):284–292. https://doi.org/10.1177/074873040201700402

    Article  Google Scholar 

  112. Davidson AJ (2009) Lesion studies targeting food-anticipatory activity. Eur J Neurosci 30(9):1658–1664. https://doi.org/10.1111/j.1460-9568.2009.06961.x

    Article  PubMed  Google Scholar 

  113. Acosta-Galvan G, Yi CX, van der Vliet J, Jhamandas JH, Panula P, Angeles-Castellanos M, Del Carmen BM, Escobar C, Buijs RM (2011) Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci U S A 108(14):5813–5818. https://doi.org/10.1073/pnas.1015551108

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mendoza J, Angeles-Castellanos M, Escobar C (2005) A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats. Eur J Neurosci 22(11):2855–2862. https://doi.org/10.1111/j.1460-9568.2005.04461.x

    Article  PubMed  Google Scholar 

  115. Mistlberger R, Rusak B (1987) Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: dependence on meal size and nutrient content. Physiol Behav 41(3):219–226. https://doi.org/10.1016/0031-9384(87)90356-8

    Article  CAS  PubMed  Google Scholar 

  116. van der Vinne V, Akkerman J, Lanting GD, Riede SJ, Hut RA (2015) Food reward without a timing component does not alter the timing of activity under positive energy balance. Neuroscience 304:260–265. https://doi.org/10.1016/j.neuroscience.2015.07.061

    Article  CAS  PubMed  Google Scholar 

  117. van der Vinne V, Riede SJ, Gorter JA, Eijer WG, Sellix MT, Menaker M, Daan S, Pilorz V, Hut RA (2014) Cold and hunger induce diurnality in a nocturnal mammal. Proc Natl Acad Sci U S A 111(42):15256–15260. https://doi.org/10.1073/pnas.1413135111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hamaguchi Y, Tahara Y, Kuroda H, Haraguchi A, Shibata S (2015) Entrainment of mouse peripheral circadian clocks to <24 h feeding/fasting cycles under 24 h light/dark conditions. Sci Rep 5:14207. https://doi.org/10.1038/srep14207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xie X, Kukino A, Calcagno HE, Berman AM, Garner JP, Butler MP (2020) Natural food intake patterns have little synchronizing effect on peripheral circadian clocks. BMC Biol 18(1):160. https://doi.org/10.1186/s12915-020-00872-7

    Article  PubMed  PubMed Central  Google Scholar 

  120. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17(11):2100–2102. https://doi.org/10.1038/oby.2009.264

    Article  Google Scholar 

  121. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15(6):848–860. https://doi.org/10.1016/j.cmet.2012.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reebs SG, Mrosovsky N (1989) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythm 4(1):39–48. https://doi.org/10.1177/074873048900400103

    Article  CAS  Google Scholar 

  123. Mistlberger RE, Skene DJ (2004) Social influences on mammalian circadian rhythms: animal and human studies. Biol Rev Camb Philos Soc 79(3):533–556. https://doi.org/10.1017/s1464793103006353

    Article  PubMed  Google Scholar 

  124. Janik D, Mrosovsky N (1994) Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res 651(1–2):174–182. https://doi.org/10.1016/0006-8993(94)90695-5

    Article  CAS  PubMed  Google Scholar 

  125. Antle MC, Mistlberger RE (2000) Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J Neurosci 20(24):9326–9332. https://doi.org/10.1523/jneurosci.20-24-09326.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164–179. https://doi.org/10.1038/nrg.2016.150

    Article  CAS  PubMed  Google Scholar 

  127. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937. https://doi.org/10.1016/s0092-8674(00)81199-x

    Article  CAS  PubMed  Google Scholar 

  128. Brown SA, Kunz D, Dumas A, Westermark PO, Vanselow K, Tilmann-Wahnschaffe A, Herzel H, Kramer A (2008) Molecular insights into human daily behavior. Proc Natl Acad Sci U S A 105(5):1602–1607. https://doi.org/10.1073/pnas.0707772105

    Article  PubMed  PubMed Central  Google Scholar 

  129. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288(5466):682–685. https://doi.org/10.1126/science.288.5466.682

    Article  CAS  PubMed  Google Scholar 

  130. Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, Doyle FJ 3rd, Takahashi JS, Kay SA (2007) Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129(3):605–616. https://doi.org/10.1016/j.cell.2007.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ono D, K-i H, Honma S (2015) Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice. Sci Rep 5(1):12310. https://doi.org/10.1038/srep12310

    Article  PubMed  PubMed Central  Google Scholar 

  132. Leise TL, Goldberg A, Michael J, Montoya G, Solow S, Molyneux P, Vetrivelan R, Harrington ME (2020) Recurring circadian disruption alters circadian clock sensitivity to resetting. Eur J Neurosci 51(12):2343–2354. https://doi.org/10.1111/ejn.14179

    Article  PubMed  Google Scholar 

  133. Dijk D-J, Duffy JF (2020) Novel approaches for assessing circadian rhythmicity in humans: a review. J Biol Rhythm 35(5):421–438. https://doi.org/10.1177/0748730420940483

    Article  Google Scholar 

  134. Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S, Honma K, Mishima K, Soga T, Ueda HR (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci U S A 109(37):15036–15041. https://doi.org/10.1073/pnas.1207768109

    Article  PubMed  PubMed Central  Google Scholar 

  135. Saini C, Liani A, Curie T, Gos P, Kreppel F, Emmenegger Y, Bonacina L, Wolf JP, Poget YA, Franken P, Schibler U (2013) Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 27(13):1526–1536. https://doi.org/10.1101/gad.221374.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tahara Y, Kuroda H, Saito K, Nakajima Y, Kubo Y, Ohnishi N, Seo Y, Otsuka M, Fuse Y, Ohura Y, Komatsu T, Moriya Y, Okada S, Furutani N, Hirao A, Horikawa K, Kudo T, Shibata S (2012) In vivo monitoring of peripheral circadian clocks in the mouse. Curr Biol 22(11):1029–1034. https://doi.org/10.1016/j.cub.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  137. Weaver DR, van der Vinne V, Giannaris EL, Vajtay TJ, Holloway KL, Anaclet C (2018) Functionally complete excision of conditional alleles in the mouse suprachiasmatic nucleus by Vgat-ires-Cre. J Biol Rhythm 33(2):179–191. https://doi.org/10.1177/0748730418757006

    Article  CAS  Google Scholar 

  138. van der Vinne V, Martin Burgos B, Harrington ME, Weaver DR (2020) Deconstructing circadian disruption: assessing the contribution of reduced peripheral oscillator amplitude on obesity and glucose intolerance in mice. J Pineal Res 69(1):e12654. https://doi.org/10.1111/jpi.12654

    Article  CAS  PubMed  Google Scholar 

  139. van der Vinne V, Swoap SJ, Vajtay TJ, Weaver DR (2018) Desynchrony between brain and peripheral clocks caused by CK1δ/ε disruption in GABA neurons does not lead to adverse metabolic outcomes. Proc Natl Acad Sci U S A 115(10):E2437–e2446. https://doi.org/10.1073/pnas.1712324115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takahashi JS, Menaker M (1980) Interaction of estradiol and progesterone: effects on circadian locomotor rhythm of female golden hamsters. Am J Phys 239(5):R497–R504. https://doi.org/10.1152/ajpregu.1980.239.5.R497

    Article  CAS  Google Scholar 

  141. Silva CC, Domínguez R (2020) Clock control of mammalian reproductive cycles: looking beyond the pre-ovulatory surge of gonadotropins. Rev Endocr Metab Disord 21(1):149–163. https://doi.org/10.1007/s11154-019-09525-9

    Article  PubMed  Google Scholar 

  142. Dowse HB, Hall JC, Ringo JM (1987) Circadian and ultradian rhythms in period mutants of Drosophila melanogaster. Behav Genet 17(1):19–35

    Article  CAS  Google Scholar 

  143. Lightman SL, Conway-Campbell BL (2010) The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci 11(10):710–718. http://www.nature.com/nrn/journal/v11/n10/suppinfo/nrn2914_S1.html

    Article  CAS  Google Scholar 

  144. Aschoff J, Gerkema MP (1985) On diversity and uniformity of ultradian rhythms. In: Ultradian rhythms in physiology and behaviour, pp 321–334

    Chapter  Google Scholar 

  145. Brodsky VY (2014) Circahoralian (Ultradian) metabolic rhythms. Biochemistry (Mosc) 79(6):483–495. https://doi.org/10.1134/s0006297914060017

    Article  CAS  Google Scholar 

  146. Ixart G, Barbanel G, Nouguier-Soule J, Assenmacher I (1991) A quantitative study of the pulsatile parameters of CRH-41 secretion in unanesthetized free-moving rats. Exp Brain Res 87(1):153–158

    Article  CAS  Google Scholar 

  147. Mershon JL, Sehlhorst CS, Rebar RW, Liu JH (1992) Evidence of a corticotropin-releasing hormone pulse generator in the macaque hypothalamus. Endocrinology 130(5):2991–2996. https://doi.org/10.1210/endo.130.5.1572307

    Article  CAS  PubMed  Google Scholar 

  148. Schenda J, Vollrath L (2000) Single-cell recordings from chick pineal glands in vitro reveal ultradian and circadian oscillations. Cell Mol Life Sci 57(12):1785–1792

    Article  CAS  Google Scholar 

  149. Brodsky VY, Zvezdina ND (2010) Melatonin as the most effective organizer of the rhythm of protein synthesis in hepatocytes in vitro and in vivo. Cell Biol Int 34(12):1199–1204. https://doi.org/10.1042/CBI20100036

    Article  CAS  PubMed  Google Scholar 

  150. Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54. https://doi.org/10.1146/annurev.ph.55.030193.000313

    Article  CAS  PubMed  Google Scholar 

  151. Bilu C, Einat H, Kronfeld-Schor N (2016) Utilization of diurnal rodents in the research of depression. Drug Dev Res 77(7):336–345. https://doi.org/10.1002/ddr.21346

    Article  CAS  PubMed  Google Scholar 

  152. Couzin-Frankel J (2013) When mice mislead. Science 342(6161):922–925. https://doi.org/10.1126/science.342.6161.922

    Article  CAS  PubMed  Google Scholar 

  153. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazic SE, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, Petersen OH, Rawle F, Reynolds P, Rooney K, Sena ES, Silberberg SD, Steckler T, Würbel H (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol 18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gattermann R, Johnston RE, Yigit N, Fritzsche P, Larimer S, Ozkurt S, Neumann K, Song Z, Colak E, Johnston J, McPhee ME (2008) Golden hamsters are nocturnal in captivity but diurnal in nature. Biol Lett 4(3):253–255. https://doi.org/10.1098/rsbl.2008.0066

    Article  PubMed  PubMed Central  Google Scholar 

  155. Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G (2017) Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos Trans R Soc Lond B Biol Sci 372(1734):20160246. https://doi.org/10.1098/rstb.2016.0246

    Article  PubMed  PubMed Central  Google Scholar 

  156. Ali MA, Boujard T, Gerkema MP (1992) Terminology in biological rhythms. In: Ali MA (ed) Rhythms in fish. Plenum Press, New York, pp 7–10

    Chapter  Google Scholar 

  157. Aschoff J (1981) Biological rhythms. Handbook of behavioral neurobiology, vol 4. Plenum press, New York, pp 547–548

    Google Scholar 

  158. Aschoff J, Klotter K, Wever R (1965) Circadian vocabulary, page XI-XIV. In: Aschoff J (ed) Circadian clocks. North Holland Publishing Company, Amsterdam

    Google Scholar 

  159. Halberg F, Caradente F, Cornelissen G, Katinas GS (1977) Glossary of Chronobiology, Suppl 1. Chronobiologia 4(Suppl 1):1–189

    PubMed  Google Scholar 

  160. Neumann D (1981) Tidal and lunar rhythms. In: Aschoff J (ed) Biological Rhythms. Handbook of behavioral neurobiology, vol 4. Plenum Press, New York, pp 351–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daan R. van der Veen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

van der Veen, D.R., Gerkema, M.P., van der Vinne, V. (2022). Biological Rhythm Measurements in Rodents. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics