Skip to main content

Target Discovery for Drug Development Using Mendelian Randomization

  • Protocol
Pharmacogenomics in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2547))

Abstract

Making drug development more efficient by identifying promising drug targets can contribute to resource savings. Identifying promising drug targets using human genetic approaches can remove barriers related to translation. In addition, genetic information can be used to identify potentially causal relationships between a drug target and disease. Mendelian randomization (MR) is a class of approaches used to identify causal associations between pairs of genetically predicted traits using data from human genetic studies. MR can be used to prioritize candidate drug targets by predicting disease outcomes and adverse events that could result from the manipulation of a drug target. The theory behind MR is reviewed, including a discussion of MR assumptions, different MR analytical methods, tests for violations of assumptions, and MR methods that can be robust to some violations of MR assumptions. A protocol to perform two-sample MR (2SMR) with summary genome-wide association study (GWAS) results is described. An example of 2SMR examining the causal relationship between low-density lipoprotein (LDL) and coronary artery disease (CAD) is provided as an illustration of the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DiMasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 87:272–277

    Article  CAS  PubMed  Google Scholar 

  2. Hay M, Thomas DW, Craighead JL et al (2014) Clinical development success rates for investigational drugs. Nat Biotechnol 32:40–51

    Article  CAS  PubMed  Google Scholar 

  3. Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12:581–594

    Article  CAS  PubMed  Google Scholar 

  4. Ioannidis JPA (2012) Extrapolating from animals to humans. Sci Transl Med 4:151ps15

    Article  PubMed  Google Scholar 

  5. Perel P, Roberts I, Sena E et al (2007) Comparison of treatment effects between animal experiments and clinical trials: systematic review. BMJ 334:197

    Article  CAS  PubMed  Google Scholar 

  6. Smith GD, Ebrahim S (2002) Data dredging, bias, or confounding. BMJ 325:1437–1438

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lash TL, VanderWeele TJ, Haneause S, Rothman K (2020) Modern epidemiology, 4th edn. Wolters Kluwer Health

    Google Scholar 

  8. Forshed J (2017) Experimental design in clinical ‘omics biomarker discovery. J Proteome Res 16:3954–3960

    Article  CAS  PubMed  Google Scholar 

  9. Epidemiology for the uninitiated. https://www.bmj.com/about-bmj/resources-readers/publications/epidemiology-uninitiated. Accessed 10 Oct 2021

  10. Bennett DA, Holmes MV (2017) Mendelian randomisation in cardiovascular research: an introduction for clinicians. Heart 103:1400–1407

    Article  CAS  PubMed  Google Scholar 

  11. Savitz DA (2014) Invited commentary: interpreting associations between exposure biomarkers and pregnancy outcome. Am J Epidemiol 179:545–547

    Article  PubMed  Google Scholar 

  12. Schadt EE, Lamb J, Yang X et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith GD, Ebrahim S (2003) “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32:1–22

    Article  PubMed  Google Scholar 

  14. Fang H, ULTRA-DD Consortium, De Wolf H, et al (2019) A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat Genet 51:1082–1091

    Article  Google Scholar 

  15. Plenge RM (2019) Priority index for human genetics and drug discovery. Nat Genet 51:1073–1075

    Article  CAS  PubMed  Google Scholar 

  16. Estrada K, Froelich S, Wuster A et al (2021) Identifying therapeutic drug targets using bidirectional effect genes. Nat Commun 12:2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sanseau P, Agarwal P, Barnes MR et al (2012) Use of genome-wide association studies for drug repositioning. Nat Biotechnol 30:317–320

    Article  CAS  PubMed  Google Scholar 

  18. Nelson MR, Tipney H, Painter JL et al (2015) The support of human genetic evidence for approved drug indications. Nat Genet 47:856–860

    Article  CAS  PubMed  Google Scholar 

  19. Smith GD, Ebrahim S (2004) Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol 33:30–42

    Article  PubMed  Google Scholar 

  20. Maciejewski ML, Brookhart MA (2019) Using instrumental variables to address bias from unobserved confounders. JAMA 321:2124–2125

    Article  PubMed  Google Scholar 

  21. Angrist JD, Krueger AB (1992) The effect of age at school entry on educational attainment: an application of instrumental variables with moments from two samples. J Am Stat Assoc 87:328–336

    Article  Google Scholar 

  22. Abifadel M, Varret M, Rabès J-P et al (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  CAS  PubMed  Google Scholar 

  23. Cohen J, Pertsemlidis A, Kotowski IK et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37:161–165

    Article  CAS  PubMed  Google Scholar 

  24. Kotowski IK, Pertsemlidis A, Luke A et al (2006) A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 78:410–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Article  CAS  PubMed  Google Scholar 

  26. Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23:R89–R98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haycock PC, Burgess S, Wade KH et al (2016) Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr 103:965–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng J, Baird D, Borges M-C et al (2017) Recent developments in mendelian randomization studies. Curr Epidemiol Rep 4:330–345

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tchetgen Tchetgen EJ, Walter S, Glymour MM (2013) Commentary: building an evidence base for Mendelian randomization studies: assessing the validity and strength of proposed genetic instrumental variables. Int J Epidemiol 42:328–331

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brion MJ, Shakhbazov K, Visscher PM (2013) Calculating statistical power in Mendelian randomization studies. Int J Epidemiol 42:1497–1501

    Article  PubMed  Google Scholar 

  32. Buniello A, MacArthur JAL, Cerezo M et al (2019) The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–D1012

    Article  CAS  PubMed  Google Scholar 

  33. GTEx Consortium (2020) The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369:1318–1330

    Article  Google Scholar 

  34. Hemani G, Zheng J, Elsworth B et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7. https://doi.org/10.7554/eLife.34408

  35. Taylor K, Davey Smith G, Relton CL et al (2019) Prioritizing putative influential genes in cardiovascular disease susceptibility by applying tissue-specific Mendelian randomization. Genome Med 11:6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Deelen J, Evans DS, Arking DE et al (2019) A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun 10:3669

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baird DA, Liu JZ, Zheng J et al (2021) Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome. PLoS Genet 17:e1009224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Millard LAC, Davies NM, Timpson NJ et al (2015) MR-PheWAS: hypothesis prioritization among potential causal effects of body mass index on many outcomes, using Mendelian randomization. Sci Rep 5:16645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans DM, Brion MJ, Paternoster L et al (2013) Mining the human phenome using allelic scores that index biological intermediates. PLoS Genet 9:e1003919

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zheng J, Haberland V, Baird D et al (2020) Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet 52:1122–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Richardson TG, Hemani G, Gaunt TR et al (2020) A transcriptome-wide Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across the human phenome. Nat Commun 11:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Walker VM, Davey Smith G, Davies NM, Martin RM (2017) Mendelian randomization: a novel approach for the prediction of adverse drug events and drug repurposing opportunities. Int J Epidemiol 46:2078–2089

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gill D, Georgakis MK, Walker VM et al (2021) Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  44. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium (2012) The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 379:1214–1224

    Article  Google Scholar 

  45. Ferreira RC, Freitag DF, Cutler AJ et al (2013) Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet 9:e1003444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mokry LE, Zhou S, Guo C et al (2019) Interleukin-18 as a drug repositioning opportunity for inflammatory bowel disease: a Mendelian randomization study. Sci Rep 9:9386

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schmidt AF, Holmes MV, Preiss D et al (2019) Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9. BMC Cardiovasc Disord 19:240

    Article  PubMed  PubMed Central  Google Scholar 

  48. Thomas DC, Lawlor DA, Thompson JR (2007) Re: estimation of bias in nongenetic observational studies using “Mendelian triangulation” by Bautista et al. Ann Epidemiol 17:511–513

    Article  PubMed  Google Scholar 

  49. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665

    Article  PubMed  PubMed Central  Google Scholar 

  50. Global Lipids Genetics Consortium, Willer CJ, Schmidt EM et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45:1274–1283

    Article  Google Scholar 

  51. Nikpay M, Goel A, Won H-H et al (2015) A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet 47:1121–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chang CC, Chow CC, Tellier LC et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  53. (2005) SNP FAQ archive. The dbSNP mapping process. In: National Center for Biotechnology Information (US), 2005–. https://www.ncbi.nlm.nih.gov/books/NBK573560/

  54. McLaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17:122

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46:1985–1998

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bowden J, Del Greco MF, Minelli C et al (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36:1783–1802

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH U24AG051129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Evans, D.S. (2022). Target Discovery for Drug Development Using Mendelian Randomization. In: Yan, Q. (eds) Pharmacogenomics in Drug Discovery and Development. Methods in Molecular Biology, vol 2547. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2573-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2573-6_1

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2572-9

  • Online ISBN: 978-1-0716-2573-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics