Skip to main content

Constraining Whole-Genome Duplication Events in Geological Time

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

Abstract

The timing of whole-genome duplication (WGD) events is crucial to understanding their role in evolution and underpins many hypotheses linking WGD to increased diversity and complexity. As such, means of estimating the timing of the WGD events relative to their macroevolutionary outcomes are of considerable importance. Molecular clock methods facilitate direct estimation of the absolute timing of WGD events, integrating information on the rate of sequence evolution between species while accommodating the uncertainty inherent to the fossil record. We present an explanation of the best practice for constructing fossil calibrations and estimating the age of WGD events via molecular clock methods in the program MCMCtree, with an example dataset based on a well-characterized WGD event within the flowering dogwoods (Cornus). The approach presented herein allows for the estimation of the age of WGD events and subsequent speciation events, allowing the relationship between WGD and the macroevolutionary outcomes to be explored. In our example, we show that in the case of flowering dogwoods, the WGD event long predates the end-Cretaceous mass extinction and that the two events may be independent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark JW, Donoghue PC (2018) Whole-genome duplication and plant macroevolution. Trends Plant Sci 23(10):933–945

    Article  CAS  Google Scholar 

  2. Zhang Z, Coenen H, Ruelens P, Hazarika RR, Al HT, Oguis GK, Vandeperre A, van Noort V, Geuten K (2018) Resurrected protein interaction networks reveal the innovation potential of ancient whole-genome duplication. Plant Cell 30(11):2741–2760. https://doi.org/10.1105/tpc.18.00409

    Article  CAS  Google Scholar 

  3. Barker MS, Li Z, Kidder TI, Reardon CR, Lai Z, Oliveira LO, Scascitelli M, Rieseberg LH (2016) Most Compositae (Asteraceae) are descendants of a paleohexaploid and all share a paleotetraploid ancestor with the Calyceraceae. Am J Bot 103(7):1203–1211

    Article  CAS  Google Scholar 

  4. Vanneste K, Sterck L, Myburg AA, Van de Peer Y, Mizrachi E (2015) Horsetails are ancient polyploids: evidence from Equisetum giganteum. Plant Cell 27(6):1567–1578. https://doi.org/10.1105/tpc.15.00157

    Article  CAS  Google Scholar 

  5. Landis JB, Soltis DE, Li Z, Marx HE, Barker MS, Tank DC, Soltis PS (2018) Impact of whole-genome duplication events on diversification rates in angiosperms. Am J Bot 105(3):348–363. https://doi.org/10.1002/ajb2.1060

    Article  Google Scholar 

  6. Schranz ME, Mohammadin S, Edger PP (2012) Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr Opin Plant Biol 15(2):147–153

    Article  Google Scholar 

  7. Dodsworth S, Chase MW, Leitch AR (2016) Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot J Linn Soc 180(1):1–5

    Article  Google Scholar 

  8. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  CAS  Google Scholar 

  9. Vanneste K, Van de Peer Y, Maere S (2013) Inference of genome duplications from age distributions revisited. Mol Biol Evol 30(1):177–190

    Article  CAS  Google Scholar 

  10. Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186(1):73–85

    Article  Google Scholar 

  11. Clark JW, Donoghue PCJ (1858) 2017 Constraining the timing of whole genome duplication in plant evolutionary history. Proc R Soc B Biol Sci 284:20170912. https://doi.org/10.1098/rspb.2017.0912

    Article  CAS  Google Scholar 

  12. Macqueen DJ, Johnston IA (2014) A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc R Soc B Biol Sci 281(1778):20132881. https://doi.org/10.1098/rspb.2013.2881

    Article  Google Scholar 

  13. Yu Y, Xiang Q, Manos PS, Soltis DE, Soltis PS, Song B-H, Cheng S, Liu X, Wong G (2017) Whole-genome duplication and molecular evolution in Cornus L. (Cornaceae) – Insights from transcriptome sequences. PLoS One 12(2):e0171361. https://doi.org/10.1371/journal.pone.0171361

    Article  CAS  Google Scholar 

  14. Donoghue PC, Benton MJ (2007) Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol 22(8):424–431

    Article  Google Scholar 

  15. Parham JF, Donoghue PC, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT (2012) Best practices for justifying fossil calibrations. Syst Biol 61(2):346–359

    Article  Google Scholar 

  16. Atkinson BA, Martínez C, Crepet WL (2018) Cretaceous asterid evolution: fruits of Eydeia jerseyensis sp. nov. (Cornales) from the upper Turonian of eastern North America. Ann Bot 123(3):451–460. https://doi.org/10.1093/aob/mcy170

    Article  Google Scholar 

  17. Christopher RA (1982) The occurrence of the Complexiopollis-Atlantopollis zone (Palynomorphs) in the Eagle Ford Group (Upper Cretaceous) of Texas. J Paleontol 56:525–541

    Google Scholar 

  18. Doyle JA, Robbins EI (1977) Angiosperm pollen zonation of the continental Cretaceous of the Atlantic Coastal Plain and its application to deep wells in the Salisbury Embayment. Palynology 1:41

    Article  Google Scholar 

  19. Christopher RA (1979) Normapolles and triporate pollen assemblages from the Raritan and Magothy Formations (Upper Cretaceous) of New Jersey. Palynology 3(1):73–121

    Article  Google Scholar 

  20. Gale A, Mutterlose J, Batenburg S, Gradstein F, Agterberg F, Ogg J, Petrizzo M (2020) The Cretaceous period. In: Geologic time scale 2020. Elsevier, pp 1023–1086

    Chapter  Google Scholar 

  21. Barba-Montoya J, dos Reis M, Schneider H, Donoghue PCJ, Yang Z (2018) Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytol 218(2):819–834. https://doi.org/10.1111/nph.15011

    Article  Google Scholar 

  22. Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58(3):367–380. https://doi.org/10.1093/sysbio/syp035

    Article  Google Scholar 

  23. Benton M, Donoghue P, Asher R (2009) Calibrating and constraining molecular clocks. The Timetree of Life 35:86

    Google Scholar 

  24. Warnock RC, Yang Z, Donoghue PC (2012) Exploring uncertainty in the calibration of the molecular clock. Biol Lett 8(1):156–159

    Article  Google Scholar 

  25. Puttick MN (2019) MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35(24):5321–5322

    Article  CAS  Google Scholar 

  26. Yang Z, Rannala B (2006) Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol 23(1):212–226

    Article  CAS  Google Scholar 

  27. Shih PM, Matzke NJ (2013) Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci 201305813. https://doi.org/10.1073/pnas.1305813110

  28. Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, Heled J, Jones G, Kühnert D, De Maio N et al (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol 15(4):e1006650. https://doi.org/10.1371/journal.pcbi.1006650

    Article  CAS  Google Scholar 

  29. Warnock RC, Parham JF, Joyce WG, Lyson TR, Donoghue PC (2015) Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc R Soc B Biol Sci 282(1798):20141013

    Article  Google Scholar 

  30. Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  CAS  Google Scholar 

  31. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15(12):1647–1657

    Article  CAS  Google Scholar 

  32. Reis MD, Yang Z (2011) Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol Biol Evol 28(7):2161–2172

    Article  Google Scholar 

  33. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8(3):275–282

    Article  CAS  Google Scholar 

  34. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67(5):901

    Article  CAS  Google Scholar 

  35. Warnock RCM, Yang Z, Donoghue PCJ (1857) 2017 Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution. Proc R Soc B Biol Sci 284:20170227. https://doi.org/10.1098/rspb.2017.0227

    Article  Google Scholar 

  36. Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, Rundell RJ, Barker MS (2018) Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc Natl Acad Sci 115(18):4713–4718

    Article  CAS  Google Scholar 

  37. Nakatani Y, Mc Lysaght A (2019) Macrosynteny analysis shows the absence of ancient whole-genome duplication in lepidopteran insects. Proc Natl Acad Sci 116(6):1816–1818

    Article  CAS  Google Scholar 

  38. dos Reis M, Donoghue PCJ, Yang Z (2016) Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 17(2):71–80. https://doi.org/10.1038/nrg.2015.8

    Article  CAS  Google Scholar 

  39. Rothfels CJ, Johnson AK, Hovenkamp PH, Swofford DL, Roskam HC, Fraser-Jenkins CR, Windham MD, Pryer KM Natural History Editor: Mark A.M. 2015 natural hybridization between genera that diverged from each other approximately 60 million years ago. Am Nat 185(3):433–442. https://doi.org/10.1086/679662

  40. Gundappa MK, To T-H, Grønvold L, Martin SAM, Lien S, Geist J, Hazlerigg D, Sandve SR, Macqueen DJ (2021) Genome-wide reconstruction of rediploidization following autopolyploidization across one hundred million years of salmonid evolution. bioRxiv:2021.2006.2005.447185. https://doi.org/10.1101/2021.06.05.447185

  41. Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA (2016) On the relative abundance of autopolyploids and allopolyploids. New Phytol 210(2):391–398. https://doi.org/10.1111/nph.13698

    Article  Google Scholar 

  42. Spoelhof JP, Soltis PS, Soltis DE (2017) Pure polyploidy: closing the gaps in autopolyploid research. J Syst Evol 55(4):340–352

    Article  Google Scholar 

  43. Doyle JJ, Sherman-Broyles S (2017) Double trouble: taxonomy and definitions of polyploidy. New Phytol 213(2):487–493

    Article  Google Scholar 

  44. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186(1):5–17

    Article  CAS  Google Scholar 

  45. Lohaus R, Van de Peer Y (2016) Of dups and dinos: evolution at the K/Pg boundary. Curr Opin Plant Biol 30:62–69. https://doi.org/10.1016/j.pbi.2016.01.006

    Article  CAS  Google Scholar 

  46. Vanneste K, Maere S, Van de Peer Y (2014) Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos Trans Royal Soc B Biol Sciences 369(1648):20130353. https://doi.org/10.1098/rstb.2013.0353

    Article  Google Scholar 

  47. Levin DA (2020) Did dysploid waves follow the pulses of whole genome duplications? Plant Syst Evol 306(5):1–4

    Article  Google Scholar 

  48. Atkinson BA, Stockey RA, Rothwell GW (2016) Cretaceous origin of dogwoods: an anatomically preserved Cornus (Cornaceae) fruit from the Campanian of Vancouver Island. PeerJ 4:e2808–e2808. https://doi.org/10.7717/peerj.2808

    Article  Google Scholar 

  49. Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, Brown JW, Sessa EB, Harmon LJ (2015) Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol 207(2):454–467. https://doi.org/10.1111/nph.13491

    Article  Google Scholar 

  50. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clark, J.W., Donoghue, P.C.J. (2023). Constraining Whole-Genome Duplication Events in Geological Time. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics