Skip to main content

Sequencing and Assembly of Polyploid Genomes

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

Abstract

Polyploidy has been observed throughout major eukaryotic clades and has played a vital role in the evolution of angiosperms. Recent polyploidizations often result in highly complex genome structures, posing challenges to genome assembly and phasing. Recent advances in sequencing technologies and genome assembly algorithms have enabled high-quality, near-complete chromosome-level assemblies of polyploid genomes. Advances in novel sequencing technologies include highly accurate single-molecule sequencing with HiFi reads, chromosome conformation capture with Hi-C technique, and linked reads sequencing. Additionally, new computational approaches have also significantly improved the precision and reliability of polyploid genome assembly and phasing, such as HiCanu, hifiasm, ALLHiC, and PolyGembler. Herein, we review recently published polyploid genomes and compare the various sequencing, assembly, and phasing approaches that are utilized in these genome studies. Finally, we anticipate that accurate and telomere-to-telomere chromosome-level assembly of polyploid genomes could ultimately become a routine procedure in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doyle JJ, Flagel LE, Paterson AH et al (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461. https://doi.org/10.1146/annurev.genet.42.110807.091524

    Article  CAS  Google Scholar 

  2. Soltis DE, Albert VA, Leebens-Mack J et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348. https://doi.org/10.3732/ajb.0800079

    Article  Google Scholar 

  3. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18(7):411–424. https://doi.org/10.1038/nrg.2017.26

    Article  CAS  Google Scholar 

  4. Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284(3):151–182. https://doi.org/10.1111/j.1469-7998.2011.00829.x

    Article  Google Scholar 

  5. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34(1):401–437

    Article  CAS  Google Scholar 

  6. Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243(2):281–296. https://doi.org/10.1007/s00425-015-2450-x

    Article  CAS  Google Scholar 

  7. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8(2):135–141. https://doi.org/10.1016/j.pbi.2005.01.001

    Article  CAS  Google Scholar 

  8. Jain M, Olsen HE, Paten B et al (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17(1):239. https://doi.org/10.1186/s13059-016-1103-0

    Article  CAS  Google Scholar 

  9. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  Google Scholar 

  10. Zheng GX, Lau BT, Schnall-Levin M et al (2016) Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol 34(3):303–311. https://doi.org/10.1038/nbt.3432

    Article  CAS  Google Scholar 

  11. Nurk S, Koren S, Rhie A et al (2021) The complete sequence of a human genome. bioRxiv:2021.2005.2026.445798. https://doi.org/10.1101/2021.05.26.445798

  12. Zhang X, Wu R, Wang Y et al (2020) Unzipping haplotypes in diploid and polyploid genomes. Comput Struct Biotechnol J 18:66–72. https://doi.org/10.1016/j.csbj.2019.11.011

    Article  CAS  Google Scholar 

  13. Tang H (2017) Disentangling a polyploid genome. Nat Plants 3(9):688–689. https://doi.org/10.1038/s41477-017-0001-0

    Article  Google Scholar 

  14. Zhang X, Zhang S, Zhao Q et al (2019) Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants 5(8):833–845. https://doi.org/10.1038/s41477-019-0487-8

    Article  CAS  Google Scholar 

  15. Zhou C, Olukolu B, Gemenet DC et al (2020) Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outbred mapping populations. Nat Genet 52(11):1256–1264. https://doi.org/10.1038/s41588-020-00717-7

    Article  CAS  Google Scholar 

  16. Monat C, Padmarasu S, Lux T et al (2019) TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol 20(1):284. https://doi.org/10.1186/s13059-019-1899-5

    Article  CAS  Google Scholar 

  17. Walkowiak S, Gao L, Monat C et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588(7837):277–283. https://doi.org/10.1038/s41586-020-2961-x

    Article  CAS  Google Scholar 

  18. Wenger AM, Peluso P, Rowell WJ et al (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37(10):1155–1162. https://doi.org/10.1038/s41587-019-0217-9

    Article  CAS  Google Scholar 

  19. Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448. https://doi.org/10.1016/0022-2836(75)90213-2

    Article  CAS  Google Scholar 

  20. Sanger F, Air GM, Barrell BG et al (1977) Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265(5596):687–695. https://doi.org/10.1038/265687a0

    Article  CAS  Google Scholar 

  21. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796–815. https://doi.org/10.1038/35048692

    Article  Google Scholar 

  22. Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183. https://doi.org/10.1038/nature08670

    Article  CAS  Google Scholar 

  23. Mayer KFX, Rogers J, Dolezel J et al (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788. https://doi.org/10.1126/science.1251788

    Article  CAS  Google Scholar 

  24. Kyriakidou M, Tai HH, Anglin NL et al (2018) Current strategies of polyploid plant genome sequence assembly. Front Plant Sci 9:1660. https://doi.org/10.3389/fpls.2018.01660

    Article  Google Scholar 

  25. Li F, Fan G, Lu C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33(5):524–530

    Article  Google Scholar 

  26. Sierro N, Battey JN, Ouadi S et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5(1):1–9

    Article  Google Scholar 

  27. International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345(6194):1251788. https://doi.org/10.1126/science.1251788

    Article  CAS  Google Scholar 

  28. International Wheat Genome Sequencing Consortium (IWGSC), Investigators IRp, Appels R et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191. https://doi.org/10.1126/science.aar7191

    Article  CAS  Google Scholar 

  29. Wang M, Tu L, Yuan D et al (2019) Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet 51(2):224–229. https://doi.org/10.1038/s41588-018-0282-x

    Article  CAS  Google Scholar 

  30. Yang J, Moeinzadeh M-H, Kuhl H et al (2017) Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants 3(9):696–703

    Article  CAS  Google Scholar 

  31. Zhang J, Zhang X, Tang H et al (2018) Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet 50(11):1565–1573. https://doi.org/10.1038/s41588-018-0237-2

    Article  CAS  Google Scholar 

  32. Chen H, Zeng Y, Yang Y et al (2020) Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11(1):2494. https://doi.org/10.1038/s41467-020-16338-x

    Article  CAS  Google Scholar 

  33. Sun H, Jiao W-B, Krause K et al (2021) Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. bioRxiv:2021.2005.2015.444292. https://doi.org/10.1101/2021.05.15.444292

  34. Souza GM, Berges H, Bocs S et al (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4(3–4):145–156. https://doi.org/10.1007/s12042-011-9079-0

    Article  CAS  Google Scholar 

  35. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  Google Scholar 

  36. D’Amore R, Johnson J, Haldenby S et al (2017) SMRT Gate: a method for validation of synthetic constructs on Pacific Biosciences sequencing platforms. BioTechniques 63(1):13–20. https://doi.org/10.2144/000114565

    Article  CAS  Google Scholar 

  37. Jain M, Koren S, Miga KH et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36(4):338–345. https://doi.org/10.1038/nbt.4060

    Article  CAS  Google Scholar 

  38. Chaisson MJ, Huddleston J, Dennis MY et al (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature 517(7536):608–611. https://doi.org/10.1038/nature13907

    Article  CAS  Google Scholar 

  39. Ott A, Schnable JC, Yeh CT et al (2018) Linked read technology for assembling large complex and polyploid genomes. BMC Genomics 19(1):651. https://doi.org/10.1186/s12864-018-5040-z

    Article  CAS  Google Scholar 

  40. Tang H, Zhang X, Miao C et al (2015) ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol 16(1):1–15

    Article  CAS  Google Scholar 

  41. Lam ET, Hastie A, Lin C et al (2012) Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol 30(8):771–776. https://doi.org/10.1038/nbt.2303

    Article  CAS  Google Scholar 

  42. Tang H, Lyons E, Town CD (2015) Optical mapping in plant comparative genomics. Gigascience 4:3. https://doi.org/10.1186/s13742-015-0044-y

    Article  Google Scholar 

  43. Jiao WB, Schneeberger K (2017) The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol 36:64–70. https://doi.org/10.1016/j.pbi.2017.02.002

    Article  CAS  Google Scholar 

  44. Burton JN, Adey A, Patwardhan RP et al (2013) Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31(12):1119–1125. https://doi.org/10.1038/nbt.2727

    Article  CAS  Google Scholar 

  45. Zhou Q, Tang D, Huang W et al (2020) Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat Genet 52(10):1018–1023. https://doi.org/10.1038/s41588-020-0699-x

    Article  CAS  Google Scholar 

  46. Whibley A, Kelley J, Narum S (2021) The changing face of genome assemblies: guidance on achieving high-quality reference genomes. Mol Ecol Resour 21(3):641–652

    Article  CAS  Google Scholar 

  47. Sedlazeck FJ, Lee H, Darby CA et al (2018) Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 19(6):329–346

    Article  CAS  Google Scholar 

  48. Zhang L, Chen F, Zhang X et al (2020) The water lily genome and the early evolution of flowering plants. Nature 577(7788):79–84

    Article  CAS  Google Scholar 

  49. Warren WC, Harris RA, Haukness M et al (2020) Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science 370(6523):eabc6617

    Article  CAS  Google Scholar 

  50. Gallagher JP, Grover C, Hu G et al (2016) Insights into the ecology and evolution of polyploid plants through network analysis. Mol Ecol 25(11):2644–2660

    Article  Google Scholar 

  51. Shi X, Zhang C, Kwan KD et al (2015) Genome-wide dosage-dependent and -independent regulation contributes to gene expression and evolutionary novelty in plant polyploids. Mol Biol Evol (9):2351–2366

    Google Scholar 

  52. Roulin A, Auer PL, Libault M et al (2013) The fate of duplicated genes in a polyploid plant genome. Plant J 73(1):143–153

    Article  CAS  Google Scholar 

  53. Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21(10):539–543

    Article  CAS  Google Scholar 

  54. Osborn TC, Pires JC, Birchler JA et al (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19(3):141–147

    Article  CAS  Google Scholar 

  55. Schrinner SD, Mari RS, Ebler J et al (2020) Haplotype threading: accurate polyploid phasing from long reads. Genome Biol 21(1):252. https://doi.org/10.1186/s13059-020-02158-1

    Article  Google Scholar 

  56. Browning SR, Browning BL (2011) Haplotype phasing: existing methods and new developments. Nat Rev Genet 12(10):703–714

    Article  CAS  Google Scholar 

  57. Gaeta RT, Chris Pires J (2010) Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol 186(1):18–28

    Article  CAS  Google Scholar 

  58. Hufton AL, Panopoulou G (2009) Polyploidy and genome restructuring: a variety of outcomes. Curr Opin Genet Dev 19(6):600–606

    Article  CAS  Google Scholar 

  59. Chalhoub B, Denoeud F, Liu S et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  Google Scholar 

  60. Tørresen OK, Star B, Mier P et al (2019) Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res 47(21):10994–11006

    Article  Google Scholar 

  61. Hartley G, O’Neill RJ (2019) Centromere repeats: hidden gems of the genome. Genes (Basel) 10(3):223

    Article  CAS  Google Scholar 

  62. Bailey JA, Yavor AM, Massa HF et al (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11(6):1005–1017

    Article  CAS  Google Scholar 

  63. Chin C-S, Peluso P, Sedlazeck FJ et al (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 13(12):1050–1054

    Article  CAS  Google Scholar 

  64. Lippert R, Schwartz R, Lancia G et al (2002) Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief Bioinform 3(1):23–31

    Article  CAS  Google Scholar 

  65. Xie M, Wu Q, Wang J et al (2016) H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of polyploids. Bioinformatics 32(24):3735–3744

    Article  CAS  Google Scholar 

  66. Das S, Vikalo H (2015) SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC Genomics 16(1):1–16

    Article  Google Scholar 

  67. Berger E, Yorukoglu D, Peng J et al (2014) HapTree: a novel Bayesian framework for single individual polyplotyping using NGS data. PLoS Comput Biol 10(3):e1003502

    Article  Google Scholar 

  68. Aguiar D, Istrail S (2012) HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data. J Comput Biol 19(6):577–590

    Article  CAS  Google Scholar 

  69. Motazedi E, Finkers R, Maliepaard C et al (2018) Exploiting next-generation sequencing to solve the haplotyping puzzle in polyploids: a simulation study. Brief Bioinform 19(3):387–403. https://doi.org/10.1093/bib/bbw126

    Article  Google Scholar 

  70. Moeinzadeh M-H, Yang J, Muzychenko E et al (2020) Ranbow: a fast and accurate method for polyploid haplotype reconstruction. PLoS Comput Biol 16(5):e1007843

    Article  CAS  Google Scholar 

  71. Abou Saada O, Tsouris A, Eberlein C et al (2021) nPhase: an accurate and contiguous phasing method for polyploids. Genome Biol 22(1):1–27

    Article  Google Scholar 

  72. Majidian S, Kahaei MH, de Ridder D (2020) Hap10: reconstructing accurate and long polyploid haplotypes using linked reads. BMC Bioinformatics 21(1):253. https://doi.org/10.1186/s12859-020-03584-5

    Article  Google Scholar 

  73. Garg S (2021) Computational methods for chromosome-scale haplotype reconstruction. Genome Biol 22(1):1–24

    Article  Google Scholar 

  74. Baaijens JA, Schönhuth A (2019) Overlap graph-based generation of haplotigs for diploids and polyploids. Bioinformatics 35(21):4281–4289

    Article  CAS  Google Scholar 

  75. Nurk S, Walenz BP, Rhie A et al (2020) HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res 30(9):1291–1305

    Article  CAS  Google Scholar 

  76. Koren S, Walenz BP, Berlin K et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27(5):722–736

    Article  CAS  Google Scholar 

  77. Cheng H, Concepcion GT, Feng X et al (2021) Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods 18(2):170–175

    Article  CAS  Google Scholar 

  78. Collard BC, Jahufer M, Brouwer J et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1):169–196

    Article  CAS  Google Scholar 

  79. Bourke PM, van Geest G, Voorrips RE et al (2018) polymapR—linkage analysis and genetic map construction from F1 populations of outcrossing polyploids. Bioinformatics 34(20):3496–3502

    Article  CAS  Google Scholar 

  80. Hackett CA, Boskamp B, Vogogias A et al (2017) TetraploidSNPMap: software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage data. J Hered 108(4):438–442

    Article  CAS  Google Scholar 

  81. Grandke F, Ranganathan S, van Bers N et al (2017) PERGOLA: fast and deterministic linkage mapping of polyploids. BMC Bioinformatics 18(1):1–9

    Article  Google Scholar 

  82. Broman KW, Wu H, Sen Ś et al (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7):889–890

    Article  CAS  Google Scholar 

  83. Yuan Y, Chung CY-L, Chan T-F (2020) Advances in optical mapping for genomic research. Comput Struct Biotechnol J 18:2051–2062

    Article  CAS  Google Scholar 

  84. Ghurye J, Rhie A, Walenz BP et al (2019) Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLoS Comput Biol 15(8):e1007273

    Article  CAS  Google Scholar 

  85. Dudchenko O, Batra SS, Omer AD et al (2017) De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356(6333):92–95

    Article  CAS  Google Scholar 

  86. Wang K, Wang J, Zhu C et al (2021) African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184(5):1362–1376.e1318

    Article  CAS  Google Scholar 

  87. Matthews BJ, Dudchenko O, Kingan SB et al (2018) Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563(7732):501–507

    Article  CAS  Google Scholar 

  88. Wang P, Yu J, Jin S et al (2021) Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Hortic Res 8(1):1–15

    Google Scholar 

  89. Hu W, Ji C, Shi H et al (2021) Allele-defined genome reveals biallelic differentiation during cassava evolution. Mol Plant 14(6):851–854

    Article  CAS  Google Scholar 

  90. Chikhi R, Limasset A, Medvedev P (2016) Compacting de Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics 32(12):i201–i208

    Article  CAS  Google Scholar 

  91. Rabanus-Wallace MT, Hackauf B, Mascher M et al (2021) Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat Genet 53(4):564–573. https://doi.org/10.1038/s41588-021-00807-0

    Article  CAS  Google Scholar 

  92. Jayakodi M, Padmarasu S, Haberer G et al (2020) The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588(7837):284–289. https://doi.org/10.1038/s41586-020-2947-8

    Article  CAS  Google Scholar 

  93. Shao L, Xing F, Xu C et al (2019) Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc Natl Acad Sci U S A 116(12):5653–5658. https://doi.org/10.1073/pnas.1820513116

    Article  CAS  Google Scholar 

  94. Eagen KP (2018) Principles of chromosome architecture revealed by Hi-C. Trends Biochem Sci 43(6):469–478. https://doi.org/10.1016/j.tibs.2018.03.006

    Article  CAS  Google Scholar 

  95. Wang M, Wang P, Lin M et al (2018) Evolutionary dynamics of 3D genome architecture following polyploidization in cotton. Nat Plants 4(2):90–97. https://doi.org/10.1038/s41477-017-0096-3

    Article  CAS  Google Scholar 

  96. Zhang H, Zheng R, Wang Y et al (2019) The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res 47(15):7857–7869. https://doi.org/10.1093/nar/gkz511

    Article  CAS  Google Scholar 

  97. Costa MD, Artur MA, Maia J et al (2017) A footprint of desiccation tolerance in the genome of Xerophyta viscosa. Nat Plants 3:17038. https://doi.org/10.1038/nplants.2017.38

    Article  CAS  Google Scholar 

  98. Hittalmani S, Mahesh HB, Shirke MD et al (2017) Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18(1):465. https://doi.org/10.1186/s12864-017-3850-z

    Article  CAS  Google Scholar 

  99. Akpinar BA, Biyiklioglu S, Alptekin B et al (2018) Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides. Plant Biotechnol J 16(12):2077–2087. https://doi.org/10.1111/pbi.12940

    Article  CAS  Google Scholar 

  100. Yin D, Ji C, Ma X et al (2018) Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. Gigascience 7(6):giy066. https://doi.org/10.1093/gigascience/giy066

    Article  CAS  Google Scholar 

  101. Shi J, Ma X, Zhang J et al (2019) Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat Commun 10(1):464. https://doi.org/10.1038/s41467-018-07876-6

    Article  CAS  Google Scholar 

  102. Edger PP, Poorten TJ, VanBuren R et al (2019) Origin and evolution of the octoploid strawberry genome. Nat Genet 51(3):541–547. https://doi.org/10.1038/s41588-019-0356-4

    Article  CAS  Google Scholar 

  103. Bertioli DJ, Jenkins J, Clevenger J et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51(5):877–884. https://doi.org/10.1038/s41588-019-0405-z

    Article  CAS  Google Scholar 

  104. An D, Zhou Y, Li C et al (2019) Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proc Natl Acad Sci U S A 116(38):18893–18899. https://doi.org/10.1073/pnas.1910401116

    Article  CAS  Google Scholar 

  105. Guo ZH, Ma PF, Yang GQ et al (2019) Genome sequences provide insights into the reticulate origin and unique traits of Woody Bamboos. Mol Plant 12(10):1353–1365. https://doi.org/10.1016/j.molp.2019.05.009

    Article  CAS  Google Scholar 

  106. Song JM, Guan Z, Hu J et al (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6(1):34–45. https://doi.org/10.1038/s41477-019-0577-7

    Article  CAS  Google Scholar 

  107. VanBuren R, Man Wai C, Wang X et al (2020) Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat Commun 11(1):884. https://doi.org/10.1038/s41467-020-14724-z

    Article  CAS  Google Scholar 

  108. Chen ZJ, Sreedasyam A, Ando A et al (2020) Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 52(5):525–533. https://doi.org/10.1038/s41588-020-0614-5

    Article  CAS  Google Scholar 

  109. Ye CY, Wu D, Mao L et al (2020) The genomes of the allohexaploid Echinochloa crus-galli and its progenitors provide insights into polyploidization-driven adaptation. Mol Plant 13(9):1298–1310. https://doi.org/10.1016/j.molp.2020.07.001

    Article  CAS  Google Scholar 

  110. Abrouk M, Ahmed HI, Cubry P et al (2020) Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat Commun 11(1):4488. https://doi.org/10.1038/s41467-020-18329-4

    Article  CAS  Google Scholar 

  111. Zhang J, Wu F, Yan Q et al (2021) The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnol J 19(3):532–547. https://doi.org/10.1111/pbi.13483

    Article  CAS  Google Scholar 

  112. Yan Q, Wu F, Xu P et al (2021) The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth. Mol Ecol Resour 21(2):526–542. https://doi.org/10.1111/1755-0998.13271

    Article  CAS  Google Scholar 

  113. Chen D, Zhang Q, Tang W et al (2020) The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc Natl Acad Sci U S A 117(47):29775–29785. https://doi.org/10.1073/pnas.2005545117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, Y., Yu, J., Jiang, M., Lei, W., Zhang, X., Tang, H. (2023). Sequencing and Assembly of Polyploid Genomes. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics