Skip to main content

Inference of Ancient Polyploidy from Genomic Data

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

  • 1221 Accesses

Abstract

Whole-genome sequence data have revealed that numerous eukaryotic organisms derive from distant polyploid ancestors, even when these same organisms are genetically and karyotypically diploid. Such ancient whole-genome duplications (WGDs) have been important for long-term genome evolution and are often speculatively associated with important evolutionary events such as key innovations, adaptive radiations, or survival after mass extinctions. Clearly, reliable methods for unveiling ancient WGDs are key toward furthering understanding of the long-term evolutionary significance of polyploidy. In this chapter, we describe a set of basic established comparative genomics approaches for the inference of ancient WGDs from genomic data based on empirical age distributions and collinearity analyses, explain the principles on which they are based, and illustrate a basic workflow using the software “wgd,” geared toward a typical exploratory analysis of a newly obtained genome sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18(7):411–424

    Article  Google Scholar 

  2. Zwaenepoel A, Van de Peer Y (2018) wgd—simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35(12):2153–2155

    Article  Google Scholar 

  3. Rabier C-E, Ta T, Ané C (2013) Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. Mol Biol Evol 31(3):750–762

    Article  Google Scholar 

  4. Zwaenepoel A, Van de Peer Y (2020) Model-based detection of whole-genome duplications in a phylogeny. Mol Biol Evol 37(9):2734–2746

    Article  CAS  Google Scholar 

  5. Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31(7):1914–1922

    Article  CAS  Google Scholar 

  6. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100

    Article  CAS  Google Scholar 

  7. Zwaenepoel A, Van de Peer Y (2019) Inference of ancient whole-genome duplications and the evolution of gene duplication and loss rates. Mol Biol Evol 36(7):1384–1404

    Article  CAS  Google Scholar 

  8. Huynen MA, van Nimwegen E (1998) The frequency distribution of gene family sizes in complete genomes. Mol Biol Evol 15(5):583–589

    Article  CAS  Google Scholar 

  9. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290(5494):1151–1155

    Article  CAS  Google Scholar 

  10. Karev GP, Wolf YI, Rzhetsky AY, Berezovskaya FS, Koonin EV (2002) Birth and death of protein domains: a simple model of evolution explains power law behavior. BMC Evol Biol 2(1):18

    Article  Google Scholar 

  11. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[W]. Plant Cell 16(7):1667–1678

    Article  CAS  Google Scholar 

  12. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102(15):5454

    Article  CAS  Google Scholar 

  13. Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5(10):752–763

    Article  Google Scholar 

  14. Vanneste K, Van de Peer Y, Maere S (2012) Inference of genome duplications from age distributions revisited. Mol Biol Evol 30(1):177–190

    Article  Google Scholar 

  15. Tiley GP, Barker MS, Burleigh JG (2018) Assessing the performance of Ks plots for detecting ancient whole genome duplications. Genome Biol Evol 10(11):2882–2898

    Google Scholar 

  16. Sensalari C, Maere S, Lohaus R (2021) ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 38(2):530–532

    Article  Google Scholar 

  17. Lynch M, Conery JS (2003) The evolutionary demography of duplicate genes. J Struct Funct Genom 3(1):35–44

    Article  CAS  Google Scholar 

  18. Thorne JL, Kishino H, Felsenstein J (1991) An evolutionary model for maximum likelihood alignment of DNA sequences. J Mol Evol 33(2):114–124

    Article  CAS  Google Scholar 

  19. Hughes T, Liberles DA (2008) The power-law distribution of gene family size is driven by the pseudogenisation rate’s heterogeneity between gene families. Gene 414(1):85–94

    Article  CAS  Google Scholar 

  20. Zwaenepoel A, Van de Peer Y (2021) A two-type branching process model of gene family evolution. bioRxiv:2021.03.18.435925

    Google Scholar 

  21. Li Z, Defoort J, Tasdighian S, Maere S, Van de Peer Y, De Smet R (2016) Gene duplicability of core genes is highly consistent across all angiosperms. Plant Cell 28(2):326–344

    Article  CAS  Google Scholar 

  22. Tasdighian S, Van Bel M, Li Z, Van de Peer Y, Carretero-Paulet L, Maere S (2017) Reciprocally retained genes in the angiosperm lineage show the hallmarks of dosage balance sensitivity. Plant Cell 29(11):2766–2785

    Article  CAS  Google Scholar 

  23. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2(5):333–341

    Article  CAS  Google Scholar 

  24. Yang Z (2014) Molecular evolution: a statistical approach. Oxford University Press, Oxford

    Book  Google Scholar 

  25. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  26. Vanneste K, Van de Peer Y, Maere S (2013) Inference of genome duplications from age distributions revisited. Mol Biol Evol 30(1):177–190

    Article  CAS  Google Scholar 

  27. Li W (1997) Molecular evolution. Sinauer Associates Incorporated, Sunderland

    Google Scholar 

  28. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P, French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  Google Scholar 

  29. Amborella Genome Project, Albert VA, Barbazuk WB, dePamphilis CW, Der JP, Leebens-Mack J, Ma H, Palmer JD, Rounsley S, Sankoff D, Schuster SC (2013) The Amborella genome and the evolution of flowering plants. Science 342(6165):1241089

    Article  Google Scholar 

  30. Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van de Peer Y, Coppens F, Vandepoele K (2017) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res 46(D1):D1190–D1196

    Google Scholar 

  31. Buchfink B, Reuter K, Drost H-G (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods 18(4):366–368

    Article  CAS  Google Scholar 

  32. Van Dongen SM (2000) Graph clustering by flow simulation

    Google Scholar 

  33. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 20(1):238

    Article  Google Scholar 

  34. Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13(9):2178–2189

    Article  CAS  Google Scholar 

  35. Östlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O, Sonnhammer ELL (2009) InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res 38(suppl_1):D196–D203

    Google Scholar 

  36. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  Google Scholar 

  37. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  Google Scholar 

  38. Ruprecht C, Lohaus R, Vanneste K, Mutwil M, Nikoloski Z, Van de Peer Y, Persson S (2017) Revisiting ancestral polyploidy in plants. Sci Adv 3(7):e1603195

    Article  Google Scholar 

  39. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8(2):135–141

    Article  CAS  Google Scholar 

  40. Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320(5875):486–488

    Article  CAS  Google Scholar 

  41. Proost S, Fostier J, De Witte D, Dhoedt B, Demeester P, Van de Peer Y, Vandepoele K (2011) i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res 40(2):e11–e11

    Article  Google Scholar 

  42. Thomas GWC, Ather SH, Hahn MW (2017) Gene-tree reconciliation with MUL-trees to resolve polyploidy events. Syst Biol 66(6):1007–1018

    Article  Google Scholar 

  43. Yang Y, Moore MJ, Brockington SF, Mikenas J, Olivieri J, Walker JF, Smith SA (2018) Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events. New Phytol 217(2):855–870

    Article  CAS  Google Scholar 

  44. Initiative OTPT (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574(7780):679–685

    Article  Google Scholar 

  45. Roelofs D, Zwaenepoel A, Sistermans T, Nap J, Kampfraath AA, Van de Peer Y, Ellers J, Kraaijeveld K (2020) Multi-faceted analysis provides little evidence for recurrent whole-genome duplications during hexapod evolution. BMC Biol 18(1):57

    Article  CAS  Google Scholar 

  46. Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, Rundell RJ, Barker MS (2018) Multiple large-scale gene and genome duplications during the evolution of hexapods. Proc Natl Acad Sci 115(18):4713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Yves Van de Peer and Zhen Li for their support and helpful feedback. Hengchi Chen and Arthur Zwaenepoel acknowledge the PhD Fellowship of the Research Foundation—Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Zwaenepoel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, H., Zwaenepoel, A. (2023). Inference of Ancient Polyploidy from Genomic Data. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics