Skip to main content

A Fluorescence-Microscopic System for Monitoring the Turnover of the Autophagic Substrate p62/SQSTM1

  • Protocol
  • First Online:
Apoptosis and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2543))

Abstract

In conditions of cellular stress and nutrient shortage, macroautophagy (hereafter referred to as autophagy) assures the degradation of dysfunctional macromolecules and organelles as it liberates energy resources via the breakdown of dispensable cellular components. Morphologically, autophagy is characterized by the formation of double-membraned autophagosomes that facilitate the isolation of autophagic cargo for subsequent lysosomal degradation at low pH. Sequestosome-1 (SQSTM1, better known as ubiquitin-binding protein p62), is an autophagosomal cargo receptor that targets proteins for selective autophagic degradation. Indeed, the redistribution of tandem mCherry and enhanced green fluorescent protein (mCherry-EGFP)-conjugated p62 from the cytosol into nascent autophagosomes constitutes a phenotype applicable to microscopic analysis. Furthermore, the differential pH sensitivity of mCherry and EGFP allows the visualization of autophagic flux due to the selective decrease of the EGFP signal upon fusion of autophagosomes with lysosomes. Here, we describe a method employing automated confocal cellular imaging for the study of autophagic degradation that is amenable to systems biology approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine B, Sinha S, Kroemer G (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4:600–606. https://doi.org/10.4161/AUTO.6260

    Article  CAS  PubMed  Google Scholar 

  2. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11. https://doi.org/10.1016/J.CELL.2018.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. López-Otín C, Kroemer G (2021) Hallmarks of health. Cell 184:33–63. https://doi.org/10.1016/J.CELL.2020.11.034

    Article  PubMed  Google Scholar 

  4. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:9 17:528–542. https://doi.org/10.1038/nrc.2017.53

  5. Kim KH, Lee M-S (2014) Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 10:322–337. https://doi.org/10.1038/nrendo.2014.35

    Article  CAS  PubMed  Google Scholar 

  6. Deretic V, Kroemer G (2021) Autophagy in metabolism and quality control: opposing, complementary or interlinked functions? Autophagy. https://doi.org/10.1080/15548627.2021.1933742

  7. Mizushima N (2020) The ATG conjugation systems in autophagy. Curr Opin Cell Biol 63:1–10. https://doi.org/10.1016/J.CEB.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  8. Ponpuak M, Mandell MA, Kimura T et al (2015) Secretory autophagy. Curr Opin Cell Biol 35:106–116. https://doi.org/10.1016/J.CEB.2015.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katsuragi Y, Ichimura Y, Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282:4672–4678. https://doi.org/10.1111/FEBS.13540

    Article  CAS  PubMed  Google Scholar 

  10. Lamark T, Svenning S, Johansen T (2017) Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem 61:609–624. https://doi.org/10.1042/EBC20170035

    Article  PubMed  Google Scholar 

  11. Yang KC, Sathiyaseelan P, Ho C, Gorski SM (2018) Evolution of tools and methods for monitoring autophagic flux in mammalian cells. Biochem Soc Trans 46:97–110. https://doi.org/10.1042/BST20170102

    Article  CAS  PubMed  Google Scholar 

  12. Zhou C, Zhong W, Zhou J et al (2012) Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy 8:1215–1226. https://doi.org/10.4161/AUTO.20284

    Article  CAS  PubMed  Google Scholar 

  13. Bravo-San Pedro JM, Pietrocola F, Sica V et al (2017) High-throughput quantification of GFP-LC3+ dots by automated fluorescence microscopy. Methods Enzymol 587:71–86. https://doi.org/10.1016/BS.MIE.2016.10.022

    Article  CAS  PubMed  Google Scholar 

  14. Kepp O, Chen G, Carmona-Gutierrez D et al (2019) A discovery platform for the identification of caloric restriction mimetics with broad health-improving effects. Autophagy 16:188–189. https://doi.org/10.1080/15548627.2019.1688984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu Q, Tian A-L, Li B et al (2021) IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer 9:e002722. https://doi.org/10.1136/JITC-2021-002722

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545. https://doi.org/10.4161/AUTO.4600

    Article  CAS  PubMed  Google Scholar 

  17. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18:1865. https://doi.org/10.3390/IJMS18091865

    Article  PubMed Central  Google Scholar 

  18. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of Ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145. https://doi.org/10.1074/JBC.M702824200

    Article  CAS  PubMed  Google Scholar 

  19. Klionsky DJ, Abdalla FC, Abeliovich H et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544. https://doi.org/10.4161/AUTO.19496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

O.K. receives funding from the DIM Elicit (Ile de France) and the Institut National du Cancer (INCa). G.K. is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; AMMICa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Association “Ruban Rose”; Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); Gustave Roussy Odyssea, the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); the Leducq Foundation; the RHU Torino Lumière; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. The mCherry-EGFP-p62 plasmid was a kind gift of Terje Johansen.

Conflict of Interest

G.K. and O.K. are cofounders of Samsara Therapeutics. G.K. is a founder of everImmune and Therafast Bio.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, H., Wu, Q., Kroemer, G., Kepp, O. (2022). A Fluorescence-Microscopic System for Monitoring the Turnover of the Autophagic Substrate p62/SQSTM1. In: Barcenilla, H., Diaz, D. (eds) Apoptosis and Cancer. Methods in Molecular Biology, vol 2543. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2553-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2553-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2552-1

  • Online ISBN: 978-1-0716-2553-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics