Skip to main content

A Simple 96-Well Plate-Based Method for Development of Candida Biofilms Under Static Conditions

  • Protocol
  • First Online:
Candida Species

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2542))

  • 557 Accesses

Abstract

We describe a rapid and simple in vitro method for development of Candida biofilms under static growth conditions. This 96-well microtiter-based method measures metabolic activity of sessile cells and can also be easily adapted for antifungal susceptibility testing. The entire procedure takes 2–3 days to complete, reliably quantifies biofilms, and provides reproducible results that are imperative toward the standardization of antifungal susceptibility testing of biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  4. Uppuluri P, Lin L, Alqarihi A, Luo G, Youssef EG, Alkhazraji S et al (2018) The Hyr1 protein from the fungus Candida albicans is a cross kingdom immunotherapeutic target for Acinetobacter bacterial infection. PLoS Pathog 14(5):e1007056

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR et al (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6(3):e1000828

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4(4):633–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G et al (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3(9):1494–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bujdakova H, Kulkova N, Cernakova L (2012) Susceptibility to caspofungin and fluconazole and Als1/Als3 gene expression in biofilm and dispersal cells of Candida albicans. Arh Hig Rada Toksikol 63(4):497–503

    Article  CAS  PubMed  Google Scholar 

  9. Pierce CG, Uppuluri P, Tummala S, Lopez-Ribot JL (2010) A 96 well microtiter plate-based method for monitoring formation and antifungal susceptibility testing of Candida albicans biofilms. J Vis Exp (44):2287

    Google Scholar 

  10. Uppuluri P, Dinakaran H, Thomas DP, Chaturvedi AK, Lopez-Ribot JL (2009) Characteristics of Candida albicans biofilms grown in a synthetic urine medium. J Clin Microbiol 47(12):4078–4083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Corte L, Casagrande Pierantoni D, Tascini C, Roscini L, Cardinali G (2019) Biofilm specific activity: a measure to quantify microbial biofilm. Microorganisms 7(3):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mamouei Z, Alqarihi A, Singh S, Xu S, Mansour MK, Ibrahim AS et al (2018) Alexidine dihydrochloride has broad spectrum activities against diverse fungal pathogens. mSphere 3(6):e00539-18

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pierce CG, Saville SP, Lopez-Ribot JL (2014) High-content phenotypic screenings to identify inhibitors of Candida albicans biofilm formation and filamentation. Pathog Dis 70(3):423–431

    Article  CAS  PubMed  Google Scholar 

  14. Singh S, Uppuluri P, Mamouei Z, Alqarihi A, Elhassan H, French S et al (2019) The NDV-3A vaccine protects mice from multidrug resistant Candida auris infection. PLoS Pathog 15(8):e1007460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Uppuluri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Uppuluri, P. (2022). A Simple 96-Well Plate-Based Method for Development of Candida Biofilms Under Static Conditions. In: Calderone, R. (eds) Candida Species. Methods in Molecular Biology, vol 2542. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2549-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2549-1_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2548-4

  • Online ISBN: 978-1-0716-2549-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics