Skip to main content

Updates on Genomic Resources for Crop Improvement

  • Protocol
  • First Online:
Genomics of Cereal Crops

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

An increasing number of crop genomic resources, with novel technical achievements in genome analytics have led to dramatic changes in the landscape of agricultural research. This has improved our capacity to meet global challenges around food production and must be understood to better serve the needs of the human population. In this chapter, we provide a comprehensive review of historical changes in technologies which allow for improved plant genotyping, molecular marker discovery, and decoding of the plant genome. Further, we explore resources and databases available for multi-omics analysis and finally conclude with a discussion of translational genomics considerations. Ultimately, this chapter will serve as a tool for bioinformaticians and researchers to explore the deeply significant field of crop genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown M, Funk C (2008) Food security under climate change. Science 319(5863):580–581. https://doi.org/10.1126/science.1154102

    Article  CAS  PubMed  Google Scholar 

  2. Smýkal P, Varshney RK, Singh VK et al (2016) From Mendel’s discovery on pea to today’s plant genetics and breeding. Theor Appl Genet 129(12):2267–2280. https://doi.org/10.1007/s00122-016-2803-2

    Article  CAS  PubMed  Google Scholar 

  3. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. https://doi.org/10.1038/35048692

    Article  Google Scholar 

  4. Brady S, Provart N (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21(4):1034–1051. https://doi.org/10.1105/tpc.109.066050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dhanapal A, Govindaraj M (2015) Unlimited thirst for genome sequencing, data interpretation, and database usage in genomic era: the road towards fast-track crop plant improvement. Genet Res Int 2015:1–15. https://doi.org/10.1155/2015/684321

    Article  CAS  Google Scholar 

  6. Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1(1):19–35

    Article  CAS  Google Scholar 

  7. Barnes SR (1991) RFLP analysis of complex traits in crop plants. Symp Soc Exp Biol 45:219–228

    CAS  PubMed  Google Scholar 

  8. Deragon JM, Landry BS (1992) RAPD and other PCR-based analyses of plant genomes using DNA extracted from small leaf disks. PCR Methods Appl 1(3):175–180. https://doi.org/10.1101/gr.1.3.175

    Article  CAS  PubMed  Google Scholar 

  9. Qi X, Lindhout P (1997) Development of AFLP markers in barley. Mol Gen Genet 254(3):330–336. https://doi.org/10.1007/s004380050423

    Article  CAS  PubMed  Google Scholar 

  10. Feng S, He R, Lu J et al (2016) Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars. Front Genet 7:113. https://doi.org/10.3389/fgene.2016.00113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Purwoko D, Cartealy IC, Tajuddin T, Dinarti D, Sudarsono S (2019) SSR identification and marker development for sago palm based on NGS genome data. Breed Sci 69(1):1–10. https://doi.org/10.1270/jsbbs.18061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vieira ML, Santini L, Diniz AL, Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39(3):312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

    Article  PubMed  PubMed Central  Google Scholar 

  13. Godwin ID, Aitken EA, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18(9):1524–1528. https://doi.org/10.1002/elps.1150180906

    Article  CAS  PubMed  Google Scholar 

  14. Grzebelus D (2006) Transposon insertion polymorphism as a new source of molecular markers. J Fruit Ornam Plant Res 14(Suppl 1):21–29

    CAS  Google Scholar 

  15. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33(1):479–532

    Article  CAS  Google Scholar 

  16. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467. https://doi.org/10.1073/pnas.74.12.5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-art of sequencing technologies for plant genomics research. Brief Funct Genomics 11(1):3–11. https://doi.org/10.1093/bfgp/elr045

    Article  CAS  PubMed  Google Scholar 

  18. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample [published correction appears in PLoS One. 2012;7(3):10.1371/annotation/64ba358f-a483-46c2-b224-eaa5b9a33939]. PLoS One 7(2):e30087. https://doi.org/10.1371/journal.pone.0030087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Slatko BE, Gardner AF, Ausubel FM (2018) Overview of next-generation sequencing technologies. Curr Protoc Mol Biol 122(1):e59. https://doi.org/10.1002/cpmb.59

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lahens NF, Ricciotti E, Smirnova O et al (2017) A comparison of illumina and ion torrent sequencing platforms in the context of differential gene expression. BMC Genomics 18(1):602. https://doi.org/10.1186/s12864-017-4011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13(5):278–289. https://doi.org/10.1016/j.gpb.2015.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mikheyev AS, Tin MM (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14(6):1097–1102. https://doi.org/10.1111/1755-0998.12324

    Article  CAS  PubMed  Google Scholar 

  23. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Helsten U et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  Google Scholar 

  24. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  Google Scholar 

  25. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  CAS  Google Scholar 

  26. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  CAS  Google Scholar 

  27. Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8(1):2–9. https://doi.org/10.1111/j.1467-7652.2009.00459.x

    Article  CAS  PubMed  Google Scholar 

  28. Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P (2019) Tools and strategies for long-Read sequencing and de novo assembly of plant genomes. Trends Plant Sci 24(8):700–724. https://doi.org/10.1016/j.tplants.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  29. Golicz AA, Batley J, Edwards D (2016) Towards plant pangenomics. Plant Biotechnol J 14(4):1099–1105. https://doi.org/10.1111/pbi.12499

    Article  PubMed  Google Scholar 

  30. Khan A, Garg V, Roorkiwal M, Golicz A, Edwards D, Varshney R (2020) Super-pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci 25(2):148–158. https://doi.org/10.1016/j.tplants.2019.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y (2014) De novo assembly of soybean wild relatives for pangenome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052

    Article  CAS  Google Scholar 

  32. Schatz M, Maron L, Stein J, Wences A, Gurtowski J, Biggers E, Lee H (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15(11):506

    PubMed  PubMed Central  Google Scholar 

  33. Hirsch C, Foerster J, Johnson J et al (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26(1):121–135. https://doi.org/10.1105/tpc.113.119982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chaisson MJP, Wilson RK, Eichler EE (Nov. 2015) Genetic variation and the de novo assembly of human genomes. Nat Rev Genet 16(11):627–640

    Article  CAS  Google Scholar 

  35. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123. https://doi.org/10.1101/gr.089532.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  CAS  Google Scholar 

  37. Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using compressed data structures. Genome Res 22:549–556

    Article  CAS  Google Scholar 

  38. Hernandez D, François P, Farinelli L, Østerås M, Schrenzel J (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18:802–809

    Article  CAS  Google Scholar 

  39. Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler [published correction appears in Gigascience. 2015;4:30]. Gigascience 1(1):18. https://doi.org/10.1186/2047-217X-1-18

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao S, Sung W-K, Nagarajan N (Nov. 2011) Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J Comput Biol 18(11):1681–1691

    Article  CAS  Google Scholar 

  41. Warren RL et al (2015) LINKS: scalable alignment-free scaffolding of draft genomes with long reads. Gigascience 4:35

    Article  Google Scholar 

  42. Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I (2015) Sealer: A scalable gap-closing application for finishing draft genomes. BMC Bioinformatics 16(1):230

    Article  Google Scholar 

  43. Dew IM, Walenz B, Sutton G (Jun. 2005) A tool for analyzing mate pairs in assemblies (TAMPA). J Comput Biol 12(5):497–513

    Article  CAS  Google Scholar 

  44. Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD (2013) REAPR: a universal tool for genome assembly evaluation. Genome Biol 14(5):R47

    Article  Google Scholar 

  45. Morrell P, Buckler E, Ross-Ibarra J (2011) Crop genomics: advances and applications. Nat Rev Genet 13(2):85–96. https://doi.org/10.1038/nrg3097

    Article  CAS  PubMed  Google Scholar 

  46. Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research and genome annotation. Nat Methods 2:495–502

    Article  CAS  Google Scholar 

  47. Rudd S (2003) Expressed sequence tags: alternative or complement to whole genome sequences? Trends Plant Sci 8(7):321–329. https://doi.org/10.1016/S1360-1385(03)00131-6

    Article  CAS  PubMed  Google Scholar 

  48. Masoudi-Nejad A, Goto S, Jauregui R et al (2007) EGENES: transcriptome-based plant database of genes with metabolic pathway information and expressed sequence tag indices in KEGG. Plant Physiol 144(2):857–866. https://doi.org/10.1104/pp.106.095059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chan AP, Pertea G, Cheung F et al (2006) The TIGR maize database. Nucleic Acids Res 34(Database issue):D771–D776. https://doi.org/10.1093/nar/gkj072

    Article  CAS  PubMed  Google Scholar 

  50. Hu M, Polyak K (2006) Serial analysis of gene expression. Nat Protoc 1:1743–1760. https://doi.org/10.1038/nprot.2006.269

    Article  CAS  PubMed  Google Scholar 

  51. Reinartz J, Bruyns E, Lin JZ et al (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 1(1):95–104. https://doi.org/10.1093/bfgp/1.1.95

    Article  CAS  PubMed  Google Scholar 

  52. Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS et al (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16:1276–1288

    Article  CAS  Google Scholar 

  53. Nobuta K, Venu RC, Lu C, Belo A, Vemaraju K, Kulkarni K et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477

    Article  CAS  Google Scholar 

  54. Rickman DS, Herbert CJ, Aggerbeck LP (2003) Optimizing spotting solutions for increased reproducibility of cDNA microarrays. Nucleic Acids Res 31(18):e109. https://doi.org/10.1093/nar/gng109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H et al (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680

    Article  CAS  Google Scholar 

  56. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  CAS  Google Scholar 

  57. Lietard J, Somoza M (2019) Spotting, transcription and in situ synthesis: three routes for the fabrication of RNA microarrays. Comput Struct Biotechnol J 17:862–868. https://doi.org/10.1016/j.csbj.2019.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol 1418:93–110. https://doi.org/10.1007/978-1-4939-3578-9_5

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parkinson H, Kapushesky M, Shojatalab M et al (2007) ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35(Database):D747–D750. https://doi.org/10.1093/nar/gkl995

    Article  CAS  PubMed  Google Scholar 

  60. Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008:420747. https://doi.org/10.1155/2008/420747

    Article  Google Scholar 

  61. Agrawal G, Pedreschi R, Barkla B et al (2012) Translational plant proteomics: a perspective. J Proteome 75(15):4588–4601. https://doi.org/10.1016/j.jprot.2012.03.055

    Article  CAS  Google Scholar 

  62. Schirmer EC, Yates JR 3rd, Gerace L (2003) MudPIT: a powerful proteomics tool for discovery. Discov Med 3(18):38–39

    PubMed  Google Scholar 

  63. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  Google Scholar 

  64. Duclos S, Desjardins M (2011) Organelle proteomics. Methods Mol Biol 753:117–128. https://doi.org/10.1007/978-1-61779-148-2_8

    Article  CAS  PubMed  Google Scholar 

  65. Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol Cell Proteomics 3(11):1128–1134. https://doi.org/10.1074/mcp.T400009-MCP200

    Article  CAS  PubMed  Google Scholar 

  66. Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Botany 57(7):1547–1551. https://doi.org/10.1093/jxb/erj137

    Article  CAS  Google Scholar 

  67. Arsova B, Watt M, Usadel B (2018) Monitoring of plant protein post-translational modifications using targeted proteomics. Front Plant Sci 9:1168. https://doi.org/10.3389/fpls.2018.01168

    Article  PubMed  PubMed Central  Google Scholar 

  68. Grabsztunowicz M, Koskela M, Mulo P (2017) Post-translational modifications in regulation of chloroplast function: recent advances. Front Plant Sci 8:240. https://doi.org/10.3389/fpls.2017.00240

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xing T, Ouellet T, Miki BL (2002) Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci 7:224–230

    Article  CAS  Google Scholar 

  70. Bennett J (1983) Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein. Biochem J 212(1):1–13. https://doi.org/10.1042/bj2120001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15. https://doi.org/10.1007/978-1-4939-0366-5_1

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385. https://doi.org/10.1093/nar/gkg520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858. https://doi.org/10.1038/nprot.2015.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248. https://doi.org/10.1093/nar/gki408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161

    Article  CAS  Google Scholar 

  78. Sakurai T, Yamada Y, Sawada Y et al (2013) PRIMe update: innovative content for plant metabolomics and integration of gene expression and metabolite accumulation. Plant Cell Physiol 54(2):e5. https://doi.org/10.1093/pcp/pcs184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamada S, Ito K, Kurotani A, Yamada Y, Chikayama E, Kikuchi J (2019) InterSpin: integrated supportive webtools for low- and high-field NMR analyses toward molecular complexity. ACS Omega 4(2):3361–3369. https://doi.org/10.1021/acsomega.8b02714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Carroll AJ, Badger MR, Harvey MA (2010) The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinformatics 11:376. https://doi.org/10.1186/1471-2105-11-376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Darzi Y, Letunic I, Bork P, Yamada T (2018) iPath3.0: interactive pathways explorer v3. Nucleic Acids Res 46(W1):W510–W513. https://doi.org/10.1093/nar/gky299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kanehisa M (2016) KEGG bioinformatics resource for plant genomics and metabolomics. Methods Mol Biol 1374:55–70. https://doi.org/10.1007/978-1-4939-3167-5_3

    Article  CAS  PubMed  Google Scholar 

  84. Tokimatsu T, Sakurai N, Suzuki H et al (2005) KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138(3):1289–1300. https://doi.org/10.1104/pp.105.060525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thimm O, Bläsing O, Gibon Y et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939. https://doi.org/10.1111/j.1365-313x.2004.02016.x

    Article  CAS  PubMed  Google Scholar 

  86. Elma MJ, Salentijn EMJ, Pereira A, Angenent GC, van der Linden GC, Krens F, Smulders MJM, Vosman B (2007) Plant translational genomics: from model species to crops. Mol Breeding 20:1–13

    Article  Google Scholar 

  87. Rossignol M, Peltier J, Mock H, Matros A, Maldonado A, Jorrín J (2006) Plant proteome analysis: a 2004–2006 update. Proteomics 6(20):5529–5548. https://doi.org/10.1002/pmic.200600260

    Article  CAS  PubMed  Google Scholar 

  88. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  Google Scholar 

  89. Oughtred R, Stark C, Breitkreutz BJ et al (2019) The BioGRID interaction database: 2019 update. Nucleic Acids Res 47(D1):D529–D541. https://doi.org/10.1093/nar/gky1079

    Article  CAS  PubMed  Google Scholar 

  90. Paterson AH, Freeling M, Tang HB, Wang XY (2010) Insights from the comparison of plant genome sequences. Annu Rev Plant Biol 61:349–372

    Article  CAS  Google Scholar 

  91. Varshney R, Kudapa H, Pazhamala L et al (2014) Translational genomics in agriculture: some examples in grain legumes. CRC Crit Rev Plant Sci 34(1–3):169–194. https://doi.org/10.1080/07352689.2014.897909

    Article  Google Scholar 

  92. Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol 1374:115–140. https://doi.org/10.1007/978-1-4939-3167-5_6

    Article  CAS  PubMed  Google Scholar 

  93. Cui L, Veeraraghavan N, Richter A, Wall K, Jansen RK, Leebens-Mack J, Makalowska I, dePamphilis CW (2006) ChloroplastDB: the Chloroplast Genome Database. Nucleic Acids Res 34(suppl_1):D692–D696. https://doi.org/10.1093/nar/gkj055

    Article  CAS  PubMed  Google Scholar 

  94. Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32(Database issue):D354–D359. https://doi.org/10.1093/nar/gkh046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Spannagl M, Noubibou O, Haase D, Yang L, Gundlach H, Hindemitt T, Klee K, Haberer G, Schoof H, Mayer KFX (2007) MIPSPlantsDB—plant database resource for integrative and comparative plant genome research. Nucleic Acids Res 35(suppl_1):D834–D840. https://doi.org/10.1093/nar/gkl945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Numa H, Itoh T (2014) MEGANTE: a web-based system for integrated plant genome annotation. Plant Cell Physiol 55(1):e2. https://doi.org/10.1093/pcp/pct157

    Article  CAS  PubMed  Google Scholar 

  97. McCarthy FM, Gresham CR, Buza TJ et al (2011) AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Res 39(Database issue):D497–D506. https://doi.org/10.1093/nar/gkq1115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Narayan, A., Chitkara, P., Kumar, S. (2022). Updates on Genomic Resources for Crop Improvement. In: Wani, S.H., Kumar, A. (eds) Genomics of Cereal Crops. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2533-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2533-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2532-3

  • Online ISBN: 978-1-0716-2533-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics