Skip to main content

Measuring the Size and Spontaneous Fluctuations of Amyloid Aggregates with Fluorescence Correlation Spectroscopy

  • Protocol
  • First Online:
Bacterial Amyloids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2538))

Abstract

Bacterial amyloids decorate the cell surface of many bacteria by forming functional amyloid fibers. These amyloids have structural and biochemical similarities with many disease-related amyloids in eukaryotes. Amyloid aggregation starts at the individual monomer level, and the end product is the amyloid fibril. The process of amyloid aggregation involves a continuous increase of the aggregate size, and therefore size is a critical parameter to measure in aggregation experiments. Also, our understanding of the aggregation process, and our ability to design interventions, can benefit from a measurement of the conformational dynamics of proteins undergoing aggregation. Fluorescence correlation spectroscopy (FCS) is perhaps the most sensitive and rapid technique available currently for this purpose. It can measure the average size and the size distribution of molecules and aggregates down to sub-nm length scales and can also measure fast nanosecond time-scale conformational dynamics, all in an equilibrium solution. FCS achieves this by measuring the fluorescence intensity fluctuations of freely diffusing protein molecules in an optically defined microscopic probe volume in a solution. Here, we present a set of instructions for effectively measuring the size and dynamics of amyloid aggregates with FCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60:131–147

    Article  CAS  Google Scholar 

  2. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339. https://doi.org/10.1016/j.cell.2019.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhowmik D, Das AK, Maiti S (2015) Rapid, cell-free assay for membrane-active forms of amyloid-β. Langmuir 31:4049–4053. https://doi.org/10.1021/la502679t

    Article  CAS  PubMed  Google Scholar 

  4. Garai K, Sengupta P, Sahoo B, Maiti S (2006) Selective destabilization of soluble amyloid β oligomers by divalent metal ions. Biochem Biophys Res Commun 345:210–215. https://doi.org/10.1016/j.bbrc.2006.04.056

    Article  CAS  PubMed  Google Scholar 

  5. Dear AJ, Michaels TCT, Meisl G, Klenerman D, Wu S, Perrett S, Linse S, Dobson CM, Knowles TPJ (2020) Kinetic diversity of amyloid oligomers. Proc Natl Acad Sci U S A 117(22):12087–12094. https://doi.org/10.1073/pnas.1922267117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korn A, McLennan S, Adler J, Krueger M, Surendran D, Maiti S, Huster D (2018) Amyloid β (1-40) toxicity depends on the molecular contact between phenylalanine 19 and leucine 34. ACS Chem Neurosci 9:790–799. https://doi.org/10.1021/acschemneuro.7b00360

    Article  CAS  PubMed  Google Scholar 

  7. Garai K, Sahoo B, Kaushalya SK, Desai R, Maiti S (2007) Zinc lowers amyloid-β toxicity by selectively precipitating aggregation intermediates. Biochemistry 46:10655–10663. https://doi.org/10.1021/bi700798b

    Article  CAS  PubMed  Google Scholar 

  8. Maity BK, Vishvakarma V, Surendran D, Rawat A, Das A, Pramanik S, Arfin N, Maiti S (2018) Spontaneous fluctuations can guide drug design strategies for structurally disordered proteins. Biochemistry 57:4206–4213. https://doi.org/10.1021/acs.biochem.8b00504

    Article  CAS  PubMed  Google Scholar 

  9. Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708. https://doi.org/10.1103/PhysRevLett.29.705

    Article  CAS  Google Scholar 

  10. Maiti S, Haupts U, Webb WW (1997) Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc Natl Acad Sci U S A 94:11753–11757

    Article  CAS  Google Scholar 

  11. Tjernberg LO, Pramanik A, Björling S, Thyberg P, Thyberg J, Nordstedt C, Berndt KD, Terenius L, Rigler R (1999) Amyloid β-peptide polymerization studied using fluorescence correlation spectroscopy. Chem Biol 6:53–62. https://doi.org/10.1016/S1074-5521(99)80020-9

    Article  CAS  PubMed  Google Scholar 

  12. Sarkar B, Mithu VS, Chandra B, Mandal A, Chandrakesan M, Bhowmik D, Madhu PK, Maiti S (2014) Significant structural differences between transient amyloid-β oligomers and less-toxic fibrils in regions known to harbor familial Alzheimer’s mutations. Angew Chemie Int Ed 53:6888–6892. https://doi.org/10.1002/anie.201402636

    Article  CAS  Google Scholar 

  13. Wohland T, Maiti S, Macháň R (2020) An introduction to fluorescence correlation spectroscopy. IOP Publishing

    Book  Google Scholar 

  14. Sengupta P, Balaji J, Maiti S (2002) Measuring diffusion in cell membranes by fluorescence correlation spectroscopy. Methods 27:374–387. https://doi.org/10.1016/S1046-2023(02)00096-8

    Article  CAS  PubMed  Google Scholar 

  15. Goluguri RR, Sen S, Udgaonkar J (2019) Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein. elife 8:e44766. https://doi.org/10.7554/eLife.44766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doose S, Neuweiler H, Sauer M (2005) A close look at fluorescence quenching of organic dyes by tryptophan. ChemPhysChem 6:2277–2285. https://doi.org/10.1002/cphc.200500191

    Article  CAS  PubMed  Google Scholar 

  17. Neuweiler H, Banachewicz W, Fersht AR (2010) Kinetics of chain motions within a protein-folding intermediate. Proc Natl Acad Sci U S A 107:22106–22110. https://doi.org/10.1073/pnas.1011666107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schuler B, Hofmann H (2013) Single-molecule spectroscopy of protein folding dynamics-expanding scope and timescales. Curr Opin Struct Biol 23:36–47

    Article  CAS  Google Scholar 

  19. Sengupta P, Garai K, Balaji J, Periasamy N, Maiti S (2003) Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys J 84:1977–1984. https://doi.org/10.1016/S0006-3495(03)75006-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garai K, Sahoo B, Sengupta P, Maiti S (2008) Quasihomogeneous nucleation of amyloid beta yields numerical bounds for the critical radius, the surface tension, and the free energy barrier for nucleus formation. J Chem Phys 128:45102. https://doi.org/10.1063/1.2822322

  21. Sarkar B, Das AK, Maiti S (2013) Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. Front Physiol 4:84. https://doi.org/10.3389/fphys.2013.00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Aditi Verma for her critical reading of the manuscript. SM acknowledges support from the Department of Atomic Energy, Government of India, provided under project no. RTI4003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vishvakarma, V., Maiti, S. (2022). Measuring the Size and Spontaneous Fluctuations of Amyloid Aggregates with Fluorescence Correlation Spectroscopy. In: Arluison, V., Wien, F., Marcoleta, A. (eds) Bacterial Amyloids. Methods in Molecular Biology, vol 2538. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2529-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2529-3_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2528-6

  • Online ISBN: 978-1-0716-2529-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics