Skip to main content

Quantitative Chemical Imaging at the Cellular Level: SIMS, Fluorescence, and Correlative Techniques

  • Protocol
  • First Online:
Single Cell ‘Omics of Neuronal Cells

Part of the book series: Neuromethods ((NM,volume 184))

  • 460 Accesses

Abstract

The cell is a heterogeneous chemical structure designed to accommodate its complex cellular functions in a living organism. Quantitative chemical imaging at the cellular level enables the investigation of the structural and functional molecular relation underlying cellular processes. We describe here the detailed methodology of the state-of-the-art secondary ion mass spectrometry (SIMS, NanoSIMS) and fluorescence microscopy (confocal, STED), along with selected examples for quantitative imaging at the cellular level. Correlative imaging that combines different imaging techniques is also demonstrated for selected applications in cell imaging. This chapter serves as a guideline assisting readers from unfamiliar fields of research to obtain reliable imaging at the cellular level while highlighting the strengths, limitations, and potentials of these technologies for cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeLellis RA et al (1973) Ultrastructure and in vitro growth characteristics of a transplantable rat pheochromocytoma. Cancer 32:227–235

    Article  CAS  Google Scholar 

  2. Warren S, Chute RN (1972) Pheochromocytoma. Cancer 29:327–331

    Article  CAS  Google Scholar 

  3. Gu C, Larsson A, Ewing Andrew G (2019) Plasticity in exocytosis revealed through the effects of repetitive stimuli affect the content of nanometer vesicles and the fraction of transmitter released. Proc Natl Acad Sci 116:21409–21415

    Google Scholar 

  4. Phan NTN, Li X, Ewing AG (2017) Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat Rev Chem 1

    Google Scholar 

  5. Li X, Duneval J, Ewing Andrew G (2016) Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc Chem Res 49:2347–2354

    Google Scholar 

  6. Richter KN et al (2019) Antibody-driven capture of synaptic vesicle proteins on the plasma membrane enables the analysis of their interactions with other synaptic proteins. Sci Rep:1–12

    Google Scholar 

  7. Bell S, et al (2019). www.bio-protocol.org/e3188. 9:1–18

  8. Polerecky L et al (2012) Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol 14:1009–1023

    Google Scholar 

  9. Kabatas S et al (2019) Boron-containing probes for non-optical high-resolution imaging of biological samples. Angew Chem Int Ed 58:3438–3443

    Google Scholar 

  10. Kabatas S et al (2019) Fluorinated nanobodies for targeted molecular imaging of biological samples using nanoscale secondary ion mass spectrometry. J Analyt Atomic Spec 34:1083–1087

    Google Scholar 

  11. Thorn K (2017) Genetically encoded fluorescent tags. Mol Biol Cell 28:848–857

    Google Scholar 

  12. Dominguez N et al (2018) Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J Neurochem 144:241–254

    Google Scholar 

  13. Willig KI et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Google Scholar 

  14. Maidorn M et al (2019) Nanobodies reveal an extra-synaptic population of SNAP-25 and Syntaxin 1A in hippocampal neurons. MAbs 11:305–321

    Google Scholar 

  15. Lukinavičius G et al (2016) Fluorogenic probes for multicolor imaging in living cells. J Am Chem Soc 138:9365–9368

    Google Scholar 

  16. Revelo NH et al (2014) A new probe for super-resolution imaging of membranes elucidates trafficking pathways. J Cell Biol 205:591–606

    Google Scholar 

  17. Gubernator NG et al (2009) Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324:1441–1444

    Google Scholar 

  18. Biesinger MC et al (2002) Principal component analysis of TOF-SIMS images of organic monolayers. Anal Chem 74:5711–5716

    Google Scholar 

  19. Henderson A, Fletcher JS, Vickerman JC (2009) A comparison of PCA and MAF for ToF-SIMS image interpretation. Surf Interface Anal 41:666–674

    Google Scholar 

  20. Kilburn MR, Wacey D (2015) Nanoscale secondary ion mass spectrometry (NanoSIMS) as an analytical tool in the geosciences. In: Grice K (ed) Principles and practice of analytical techniques in geosciences, vol 4. The Royal Society of Chemistry, Cambridge, pp 1–34

    Google Scholar 

  21. Nuñez J et al (2018) NanoSIMS for biological applications: current practices and analyses. Biointerphases 13:03B301

    Google Scholar 

  22. de Laeter JR et al (2003) Atomic weights of the elements. Review 2000 (IUPAC technical report). Pure Appl Chem 75:683–800

    Google Scholar 

  23. Davission M et al (2008) Development of standards for NanoSIMS analyses of biological materials; LLNL-TR-406039. Lawrence Livermore National Lab (LLNL), Livermore

    Book  Google Scholar 

  24. Thomen A et al (2020) Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles. ACS Nano 14:4316–4325

    Google Scholar 

  25. Nieuwenhuizen RPJ et al (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10:557–562

    Google Scholar 

  26. Tortarolo G et al (2018) Evaluating image resolution in stimulated emission depletion microscopy. Optica 5:32

    Google Scholar 

  27. Culley S et al (2018) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15:263–266

    Google Scholar 

  28. Kelley JB, Paschal BM (2019) Fluorescence-based quantification of nucleocytoplasmic transport. Methods 157:106–114

    Google Scholar 

  29. Leefmann T et al (2013) Biomarker imaging of single diatom cells in a microbial mat using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Org Geochem 57:23–33

    Google Scholar 

  30. Lanekoff I, Sjövall P, Ewing AG (2011) Relative quantification of phospholipid accumulation in the PC12 cell plasma membrane following phospholipid incubation using TOF-SIMS imaging. Anal Chem 83:5337–5343

    Google Scholar 

  31. Sjövall P et al (2003) Imaging of membrane lipids in single cells by imprint-imaging time-of-flight secondary ion mass spectrometry. Anal Chem 75:3429–3434

    Google Scholar 

  32. Ostrowski S et al (2004) Mass spectrometric imaging of highly curved membranes during Tetrahymena mating. Science 305:71–73

    Google Scholar 

  33. Fletcher JS et al (2011) Three-dimensional mass spectral imaging of HeLa-M cells – sample preparation, data interpretation and visualisation. Rapid Commun Mass Spectrom 25:925–932

    Google Scholar 

  34. Newman CF et al (2017) Intracellular drug uptake—a comparison of single cell measurements using ToF-SIMS imaging and quantification from cell populations with LC/MS/MS. Anal Chem 89:11944–11953

    Google Scholar 

  35. Tian H et al (2017) Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry. Anal Chem 89:5050–5057

    Google Scholar 

  36. Phan NTN, Rizzoli SO (2020) High-resolution molecular imaging and its applications in brain and synapses. In: Wacker I, Hummel E, Burgold S, Schröder R (eds) Volume microscopy: multiscale imaging with photons, electrons, and ions. Springer US, New York, pp 37–58

    Google Scholar 

  37. Roozemond RC (1969) The effect of fixation with formaldehyde and glutaraldehyde on the composition of phospholipids extractable from rat hypothalamus. J Histochem Cytochem 17:482–486

    Article  CAS  Google Scholar 

  38. Winograd N, Bloom A (2015) Sample preparation for 3D SIMS chemical imaging of cells. Methods Mol Biol 1203:9–19

    Google Scholar 

  39. Philipsen MH et al (2018) Relative quantification of deuterated omega-3 and -6 fatty acids and their lipid turnover in PC12 cell membranes using TOF-SIMS. J Lipid Res 59:2098–2107

    Google Scholar 

  40. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Google Scholar 

  41. Westerink RHS, Ewing AG (2008) The PC12 cell as model for neurosecretion. Acta Physiol 192:273

    Article  CAS  Google Scholar 

  42. Uchiyama Y et al (2007) Phospholipid mediated plasticity in exocytosis observed in PC12 cells. Brain Res 1151:46

    Article  CAS  Google Scholar 

  43. Penen F et al (2016) Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS. J Trace Elem Med Biol 37:62–68

    Google Scholar 

  44. Zhang D-S et al (2012) Multi-isotope imaging mass spectrometry reveals slow protein turnover in hair-cell stereocilia. Nature 481:520–524

    Google Scholar 

  45. Frisz JF et al (2013) Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci 110:E613–E622

    Google Scholar 

  46. Steinhauser ML et al (2012) Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 481:516–519

    Google Scholar 

  47. Lee RFS et al (2017) Differences in cisplatin distribution in sensitive and resistant ovarian cancer cells: a TEM/NanoSIMS study. Metallomics 9:1413–1420

    Google Scholar 

  48. Jiang H et al (2017) High-resolution sub-cellular imaging by correlative NanoSIMS and electron microscopy of amiodarone internalisation by lung macrophages as evidence for drug-induced phospholipidosis. Chem Commun 53:1506–1509

    Google Scholar 

  49. Grovenor CRM et al (2006) Specimen preparation for NanoSIMS analysis of biological materials. Appl Surf Sci 252:6917–6924

    Article  CAS  Google Scholar 

  50. Gorman BL et al (2020) Measurement of absolute concentration at the subcellular scale. ACS Nano 14:6414–6419

    Google Scholar 

  51. Passarelli MK, Ewing AG (2013) Single-cell imaging mass spectrometry. Curr Opin Chem Biol 17:854–859

    Google Scholar 

  52. Sjövall P, Johansson B, Lausmaa J (2006) Localization of lipids in freeze-dried mouse brain sections by imaging TOF-SIMS. Appl Surf Sci 252:6966–6974

    Google Scholar 

  53. Saka SK et al (2014) Correlated optical and isotopic nanoscopy. Nat Commun 5:3664

    Google Scholar 

  54. Kim T et al (2005) Chromogranin A deficiency in transgenic mice leads to aberrant chromaffin granule biogenesis. J Neurosci 25:6958–6961

    Google Scholar 

  55. Jahr W, Velicky P, Danzl JG (2020) Strategies to maximize performance in STimulated Emission Depletion (STED) nanoscopy of biological specimens. Methods 174:27–41

    Google Scholar 

  56. Cranfill PJ et al (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13:557–562

    Google Scholar 

  57. Zheng Q, Lavis LD (2017) Development of photostable fluorophores for molecular imaging. Curr Opin Chem Biol 39:32–38

    Google Scholar 

  58. Spahn C et al (2019) Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett 19:500–505

    Google Scholar 

  59. Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685–701

    Google Scholar 

  60. Richter KN et al (2018) Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J 37:139–159

    Google Scholar 

  61. Waldchen S et al (2015) Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 5:15348

    Google Scholar 

  62. Watanabe S et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8:80–84

    Google Scholar 

  63. Wilhelm BG et al (2014) Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–1028

    Google Scholar 

  64. Salamifar ES, Lai RY (2013) Use of combined scanning electrochemical and fluorescence microscopy for detection of reactive oxygen species in prostate cancer cells. Anal Chem 85:9417–9421

    Google Scholar 

  65. Hassouna I et al (2016) Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol Psychiatry 21:1752–1767

    Article  CAS  Google Scholar 

  66. Hua X et al (2016) Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy. Integr Biol (Camb) 8:635–644

    Article  CAS  Google Scholar 

  67. Lovric J et al (2016) Nano secondary ion mass spectrometry imaging of dopamine distribution across nanometer vesicles. ACS Nano 11:3446–3455

    Google Scholar 

  68. Phan NTN, Fletcher JS, Ewing AG (2015) Lipid structural effects of oral administration of methylphenidate in drosophila brain by secondary ion mass spectrometry imaging. Anal Chem 87:4063–4071

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew G. Ewing or Nhu T. N. Phan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nguyen, T.D.K., Lork, A.A., Ewing, A.G., Phan, N.T.N. (2022). Quantitative Chemical Imaging at the Cellular Level: SIMS, Fluorescence, and Correlative Techniques. In: Sweedler, J.V., Eberwine, J., Fraser, S.E. (eds) Single Cell ‘Omics of Neuronal Cells. Neuromethods, vol 184. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2525-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2525-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2524-8

  • Online ISBN: 978-1-0716-2525-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics