Skip to main content

Genetic Analysis of Plant Pathogens Natural Populations

  • Protocol
  • First Online:
Plant Pathology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2536))

Abstract

Population genetics allow to address fundamental questions about the biology of plant pathogens. By testing specific hypotheses, population genetics provide insights into the population genetic variability of pathogens across different geographical areas, time, and associated plant hosts, as well as on the structure and differentiation of populations, and on the possibility that a population is introduced and from where it has originated. In this chapter, basic concepts of population genetics are introduced, as well as the five evolutionary factors affecting populations, that is, mutations, recombination, variation in population size, gene flow, and natural selection. A step-by-step workflow, from sampling to data analysis, on how to perform a genetic analysis of natural populations of plant pathogens is discussed. Increased knowledge of the population biology of pathogens is pivotal to improve management strategies of diseases in agricultural and forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartl DL, Clark AG, Clark AG (1997) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  2. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopatol 40:349–379

    Article  CAS  Google Scholar 

  3. McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124:163–180

    Article  CAS  Google Scholar 

  4. McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87:448–453

    Article  CAS  PubMed  Google Scholar 

  5. Xu J (2006) Fundamentals of fungal molecular population genetic analyses. Curr Issues Mol Biol 8:75–90

    CAS  PubMed  Google Scholar 

  6. Waples RS, Gaggiotti O (2006) INVITED REVIEW: what is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  CAS  PubMed  Google Scholar 

  7. Hill WG (1974) Estimation of linkage disequilibrium in randomly mating populations. Heredity 33:229–239

    Article  CAS  PubMed  Google Scholar 

  8. Crow JF (2010) Wright and Fisher on inbreeding and random drift. Genetics 184:609–611

    Article  PubMed  PubMed Central  Google Scholar 

  9. Loewe L, Charlesworth B, Bartolomé C et al (2006) Estimating selection on nonsynonymous mutations. Genetics 172:1079–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  11. Bergelson J, Kreitman M, Stahl EA et al (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285

    Article  CAS  PubMed  Google Scholar 

  12. Jørgensen JH, Wolfe M (1994) Genetics of powdery mildew resistance in barley. Crit Rev Plant Sci 13:97–119

    Article  Google Scholar 

  13. Thrall PH, Barrett LG, Dodds PN et al (2016) Epidemiological and evolutionary outcomes in gene-for-gene and matching allele models. Front Plant Sci 6:1084

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang J, Si W, Deng Q et al (2014) Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet 15:1–10

    Article  CAS  Google Scholar 

  15. Rep M, Kistler HC (2010) The genomic organization of plant pathogenicity in Fusarium species. Curr Opin Plant Biol 13:420–426

    Article  CAS  PubMed  Google Scholar 

  16. Milgroom MG, Peever TL (2003) Population biology of plant pathogens: the synthesis of plant disease epidemiology and population genetics. Plant Dis 87:608–617

    Article  PubMed  Google Scholar 

  17. Milgroom MG (2015) Population biology of plant pathogens: genetics, ecology, and evolution. APS Press, The American Phytopathological Society

    Google Scholar 

  18. Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430

    Article  CAS  PubMed  Google Scholar 

  19. Wallen RM, Perlin MH (2018) An overview of the function and maintenance of sexual reproduction in dikaryotic fungi. Front Microbiol 9:503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Susi H, Burdon JJ, Thrall PH et al (2020) Genetic analysis reveals long-standing population differentiation and high diversity in the rust pathogen Melampsora lini. PLoS Pathog 16:e1008731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhan J (2016) Population genetics of plant pathogens. eLS 1-7

    Google Scholar 

  22. McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  23. Stukenbrock EH (2016) Hybridization speeds up the emergence and evolution of a new pathogen species. Nat Genet 48:113–115

    Article  CAS  PubMed  Google Scholar 

  24. Feurtey A, Stevens DM, Stephan W et al (2019) Interspecific gene exchange introduces high genetic variability in crop pathogen. Genome Biol Evol 11:3095–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Currat M, Ruedi M, Petit RJ et al (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  26. Sillo F, Garbelotto M, Giordano L et al (2021) Genic introgression from an invasive exotic fungal forest pathogen increases the establishment potential of a sibling native pathogen. NeoBiota 65:109–136

    Article  Google Scholar 

  27. Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization: hybridization is leading to rapid evolution of Dutch elm disease and other fungal plant pathogens. Bioscience 51:123–133

    Article  Google Scholar 

  28. Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–486

    Article  PubMed  Google Scholar 

  29. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  30. Grigoriev IV, Nikitin R, Haridas S et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42:699–704

    Article  CAS  Google Scholar 

  31. Everhart S, Gambhir N, Stam R (2021) Population genomics of filamentous plant pathogens-a brief overview of research questions, approaches, and pitfalls. Phytopathology 111:12–22

    Article  PubMed  Google Scholar 

  32. Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    Article  CAS  PubMed  Google Scholar 

  33. Hoban S, Gaggiotti O, ConGRESS Consortium et al (2013) Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. Methods Ecol Evol 4:299–303

    Article  Google Scholar 

  34. Nadeem MA, Nawaz MA, Shahid MQ et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285

    Article  CAS  Google Scholar 

  35. Powell W, Morgante M, Andre C et al (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  36. Schlötterer C (2004) The evolution of molecular markers-just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  CAS  Google Scholar 

  37. Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050

    Article  CAS  PubMed  Google Scholar 

  38. Gonthier P, Sillo F, Lagostina E et al (2015) Selection processes in simple sequence repeats suggest a correlation with their genomic location: insights from a fungal model system. BMC Genomics 16:1–12

    Article  CAS  Google Scholar 

  39. Ivors K, Garbelotto M, Vries IDE et al (2006) Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Mol Ecol 15:1493–1505

    Article  CAS  PubMed  Google Scholar 

  40. Sillo F, Giordano L, Zampieri E et al (2017) HRM analysis provides insights on the reproduction mode and the population structure of Gnomoniopsis castaneae in Europe. Plant Pathol 66:293–303

    Article  Google Scholar 

  41. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

  42. Sillo F, Savino E, Giordano L et al (2016) Analysis of genotypic diversity provides a first glimpse on the patterns of spread of the wood decay fungus Perenniporla fraxinea in an urban park in northern Italy. J Plant Pathol 98:617–624

    Google Scholar 

  43. Grünwald NJ, Everhart SE, Knaus BJ et al (2017) Best practices for population genetic analyses. Phytopathology 107:1000–1010

    Article  PubMed  Google Scholar 

  44. Luchi N, Pratesi N, Simi L et al (2011) High-resolution melting analysis: a new molecular approach for the early detection of Diplodia pinea in Austrian pine. Fungal Biol 115:715–723

    Article  CAS  PubMed  Google Scholar 

  45. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liu Q, Guo Y, Li J et al (2012) Steps to ensure accuracy in genotype and SNP calling from Illumina sequencing data. BMC Genomics 13:1–8

    Article  CAS  Google Scholar 

  49. Li YL, Xue DX, Zhang BD et al (2018) An optimized approach for local de novo assembly of overlapping paired-end RAD reads from multiple individuals. R Soc Open Sci 5:171589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Eaton DA (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30:1844–1849

    Article  CAS  PubMed  Google Scholar 

  51. Nei M (1973) Analysis of gene diversity in subdivided populations. PNAS 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gaggiotti OE, Lange O, Rassmann K et al (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520

    Article  CAS  PubMed  Google Scholar 

  53. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  55. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  56. Yeh FC, Yang RC, Boyle TB et al (1999) POPGENE version 1.32, the user-friendly shareware for population genetic analysis. In: Molecular biology and biotechnology centre. University of Alberta, Alberta

    Google Scholar 

  57. Lancaster AK, Single RM, Solberg OD et al (2007) PyPop update–a software pipeline for large scale multilocus population genomics. Tissue Antigens 69:192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  59. Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  60. Whitlock MC, Mccauley DE (1999) Indirect measures of gene flow and migration: FST≠ 1/(4Nm+ 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  61. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nielsen R (2001) Statistical tests of selective neutrality in the age of genomics. Heredity 86:641–647

    Article  CAS  PubMed  Google Scholar 

  63. Gompert Z, Alex Buerkle C (2010) INTROGRESS: a software package for mapping components of isolation in hybrids. Mol Ecol Res 10:378–384

    Article  CAS  Google Scholar 

  64. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  65. Zheng Y, Janke A (2018) Gene flow analysis method, the D-statistic, is robust in a wide parameter space. BMC Bioinformatics 19:1–19

    Article  CAS  Google Scholar 

  66. Korneliussen TS, Albrechtsen A, Nielsen R (2014) ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15:1–13

    Article  Google Scholar 

  67. Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14:415–424

    Article  CAS  PubMed  Google Scholar 

  68. Prevosti A, Ocana J, Alonso G (1975) Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor Appl Genet 45:231–241

    Article  CAS  PubMed  Google Scholar 

  69. Felsenstein J (2004) Inferring phylogenies. Sinauer associates, Sunderland

    Google Scholar 

  70. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1–15

    Article  Google Scholar 

  71. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  72. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  74. Paradis E (2018) Analysis of haplotype networks: the randomized minimum spanning tree method. Methods Ecol Evol 9:1308–1317

    Article  Google Scholar 

  75. Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  76. Sillo F, Gianchino C, Giordano L et al (2018) Local epidemiology of the wood decay agent Laetiporus sulphureus in carob stands in Sicily. For Pathol 48:e12414

    Article  Google Scholar 

  77. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  CAS  Google Scholar 

  78. Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102

    Article  CAS  Google Scholar 

  79. Linde CC, Zala M, Ceccarelli S et al (2003) Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet Biol 40:115–125

    Article  CAS  PubMed  Google Scholar 

  80. Huson DH (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73

    Article  CAS  PubMed  Google Scholar 

  81. Ali S, Soubeyrand S, Gladieux P et al (2016) CLONCASE: estimation of sex frequency and effective population size by clonemate resampling in partially clonal organisms. Mol Ecol Res 16:845–861

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Sillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sillo, F. (2022). Genetic Analysis of Plant Pathogens Natural Populations. In: Luchi, N. (eds) Plant Pathology. Methods in Molecular Biology, vol 2536. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2517-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2517-0_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2516-3

  • Online ISBN: 978-1-0716-2517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics